Scikit-Criteria Documentation
Release 0.8.7.dev0

Juan BC

Feb 09, 2024

TUTORIALS

1 Code Repository & Issues 3
2 License 5
3 Citation 7
4 Contents 9
Bibliography 133
Python Module Index 135

Index 137

Scikit-Criteria Documentation, Release 0.8.7.dev0
®
@ l ®

Ver. 0.8.7.dev0

Scikit-Criteria is a collection of Multiple-criteria decision analysis (MCDA) methods integrated into scientific python
stack. Is Open source and commercially usable.

Our Google Groups mailing list is here.

You can contact me at: jbcabral @unc.edu.ar (if you have a support question, try the mailing list first)

TUTORIALS 1

https://quatrope.github.io/
https://github.com/quatrope/scikit-criteria/actions/workflows/CI.yml
http://scikit-criteria.readthedocs.io
https://pypi.org/project/scikit-criteria/
https://pypistats.org/packages/scikit-criteria
https://anaconda.org/conda-forge/scikit-criteria
https://img.shields.io/conda/dn/conda-forge/scikit-criteria?label=Conda-Forge%20downloads
https://www.tldrlegal.com/l/bsd3
https://badge.fury.io/py/scikit-criteria
https://en.wikipedia.org/wiki/Multiple-criteria_decision_analysis
https://groups.google.com/forum/#!forum/scikit-criteria
mailto:jbcabral@unc.edu.ar

Scikit-Criteria Documentation, Release 0.8.7.dev0

2 TUTORIALS

CHAPTER
ONE

CODE REPOSITORY & ISSUES

https://github.com/quatrope/scikit-criteria

https://github.com/quatrope/scikit-criteria

Scikit-Criteria Documentation, Release 0.8.7.dev0

4 Chapter 1. Code Repository & Issues

CHAPTER
TWO

LICENSE

Scikit-Criteria is under The 3-Clause BSD License

This license allows unlimited redistribution for any purpose as long as its copyright notices and the license’s disclaimers
of warranty are maintained.

https://raw.githubusercontent.com/quatrope/scikit-criteria/master/LICENSE.txt

Scikit-Criteria Documentation, Release 0.8.7.dev0

6 Chapter 2. License

CHAPTER
THREE

CITATION

If you are using Scikit-Criteria in your research, please cite:
If you use scikit-criteria in a scientific publication, we would appreciate citations to the following paper:

Cabral, Juan B., Nadia Ayelen Luczywo, and José Luis Zanazzi 2016 Scikit-Criteria: Coleccion de Méto-
dos de Andlisis Multi-Criterio Integrado Al Stack Cientifico de Python. In XLV Jornadas Argentinas
de Informitica E Investigacion Operativa (45JAIIO)-XIV Simposio Argentino de Investigacién Operativa
(SIO) (Buenos Aires, 2016) Pp. 59-66. http://45jaiio.sadio.org.ar/sites/default/files/Sio-23.pdf.

Bibtex entry:

@inproceedings{scikit-criteria,
author={
Juan B Cabral and Nadia Ayelen Luczywo and Jos\'{e} Luis Zanazzi},
title={
Scikit-Criteria: Colecci\'{o}n de m\'{e}todos de an\'{a}lisis
multi-criterio integrado al stack cient\'{i}fico de {P}ython},
booktitle = {
XLV Jornadas Argentinas de Inform{\'a}tica
e Investigaci{\'o}n Operativa (45JAIIO)-
XIV Simposio Argentino de Investigaci\'{o}n Operativa (SIO)
(Buenos Aires, 2016)},
year={2016},
pages = {59--66},
url={http://45jaiio.sadio.org.ar/sites/default/files/Sio-23.pdf}
}

Full Publication: http://sedici.unlp.edu.ar/handle/10915/58577

http://45jaiio.sadio.org.ar/sites/default/files/Sio-23.pdf
http://sedici.unlp.edu.ar/handle/10915/58577

Scikit-Criteria Documentation, Release 0.8.7.dev0

8 Chapter 3. Citation

CHAPTER
FOUR

CONTENTS

4.1 Installation

4.1.1 Using conda

The easiest and fastest way to get the package up and running is to install scikit-criteria using conda:

$ conda install -c conda-forge scikit-criteria

or, better yet, using mamba, which is a super fast replacement for conda:

$ conda install -c conda-forge mamba
$ mamba install -c conda-forge scikit-criteria

Note: We encourage users to use conda or mamba and the conda-forge packages for convenience, especially when
developing on Windows. It is recommended to create a new environment.

If the installation fails for any reason, please open an issue in the issue tracker.

4.1.2 Alternative installation methods

You can also install scikit-criteria from PyPI using pip:

$ pip install scikit-criteria

Finally, you can also install the latest development version of scikit-criteria directly from GitHub:

$ pip install git+https://github.com/quatrope/scikit-criteria/

This is useful if there is some feature that you want to try, but we did not release it yet as a stable version. Although you

might find some unpolished details, these development installations should work without problems. If you find any,
please open an issue in the issue tracker.

Warning: It is recommended that you never ever use sudo with distutils, pip, setuptools and friends in Linux
because you might seriously break your system [1] [2] [3] [4]. Use virtual environments instead.

https://conda.io/docs/
https://mamba.readthedocs.io/
https://conda-forge.org/
https://github.com/quatrope/scikit-criteria/issues
https://pypi.python.org/pypi/scikit-criteria/
https://github.com/quatrope/scikit-criteria/
https://github.com/quatrope/scikit-criteria/issues
http://wiki.python.org/moin/CheeseShopTutorial#Distutils_Installation
http://stackoverflow.com/questions/4314376/how-can-i-install-a-python-egg-file/4314446#comment4690673_4314446
http://workaround.org/easy-install-debian
http://matplotlib.1069221.n5.nabble.com/Why-is-pip-not-mentioned-in-the-Installation-Documentation-tp39779p39812.html)
https://docs.python.org/3/library/venv.html

[2]:

[2]:

Scikit-Criteria Documentation, Release 0.8.7.dev0

4.1.3 If you don’t have Python

If you don’t already have a python installation with numpy and scipy, we recommend to install either via your package
manager or via a python bundle. These come with numpy, scipy, matplotlib and many other helpful scientific and data
processing libraries.

Canopy and Anaconda both ship a recent version of Python, in addition to a large set of scientific python library for
Windows, Mac OSX and Linux.

4.2 Tutorials

This section contains a step-by-step by example tutorial of how to use Scikit-Criteria

Contents:

4.2.1 Quick Start

This tutorial aims to explain in a simple way, how to create decision matrices, how to analyze them and how to evaluate
them with some multi-criteria analysis methods (MCDA).

Conceptual overview
Multi-criteria data are complex. This is because at least two syntactically disconnected vectors are needed to describe
a problem.
1. matrix/A choice set.
2. And the vector of criteria optimality sense objectives/C.
Additionally it can be accompanied by a vector w/w; with the weighting of the criteria.

To summarize all these data (and some extra ones), Scikit-Criteria provides a DecisionMatrix object along with a
mkdm() utility function to facilitate the creation and validation of the data.

Your first DecisionMatrix object

First we need to import the the Scikit-Criteria module.
Then we need to create the matrix and objectives vectors.

The matrix must be a 2D array-like where every column is a criteria, and every row is an alternative.

2 alternatives by 3 criteria
matrix = [
[1, 2, 3], # alternative 1
[4, 5, 6], # alternative 2
]

matrix

(ct, 2, 31, [4, 5, 6]]

The objectives vector must be a 1D array-like with number of elements same as number of columns in the alternative
matrix (matrix). Every component of the objectives vector represent the optimal sense of each criteria.

10 Chapter 4. Contents

https://www.enthought.com/products/canopy
https://www.continuum.io/downloads

[3]:

[3]:

[4]:

[4]:

[5]:

[5]:

[6]:

Scikit-Criteria Documentation, Release 0.8.7.dev0

let's says the first two alternatives are

for maximization and the last one for minimization
objectives = [max, max, min]

objectives

[<function max>, <function max>, <function min>]

as you see the max and min are the built-in function for find max and mins in collections in python.

As you can see the function usage makes the code more readable. Also you can use as aliases of minimization and
maximization the numpy function np.min, np.max, np.amin, np.amax, np .nanmin, np.nanmax; the strings "min",

"minimize", "max", "maximize", ">", "<", "+", ; and the values -1 (minimize) and 1 (maximize).
Now we can combine this two vectors in our Scikit-Criteria decision matrix.

we use the built-in function as aliases
dm = skc.mkdm(matrix, [min, max, min])

dm

CO[1.0] CI[1.0] cC2[1.0]
AQ 1 2 3
Al 4 5 6

[2 Alternatives x 3 Criterial]

As you can see the output of the DecisionMatrix object is much more friendly than the plain python lists.

To change the generic names of the alternatives (A0 and A1) and the criteria (CO, C1 and C2); let’s assume that our data
is about cars (car 0 and car I) and their characteristics of evaluation are autonomy (maximize), comfort (maximize)
and price (minimize).

To feed this information to our DecisionMatrix object we have the parameters: alternatives that accept the names
of alternatives (must be the same number as the rows that matrix has), and criteria the criteria names (must have
same number of elements with the columns that matrix has)

dm = skc.mkdm(

matrix,

objectives,

alternatives=["car 0", "car 1"],

criteria=["autonomy", "comfort", "price"],
)
dm

autonomy[1.0] comfort[1.0] price[1.0]

car 0 1 2 3
car 1 4 5 6

[2 Alternatives x 3 Criteria]

In our final step let’s assume we know in our case, that the importance of the autonomy is the 50%, the comfort only a
5% and the price is 45%. The param to feed this to the structure is called weights and must be a vector with the same
elements as criterias on your alternative matrix (number of columns).

dm = skc.mkdm(

matrix,

objectives,

weights=[0.5, 0.05, 0.45],
alternatives=["car 0", "car 1"],
criteria=["autonomy", "comfort", "price"],

(continues on next page)

4.2. Tutorials 11

[6]:

[77:
[7]:

[8]:
[8]:

[9]:
[9]:

[10]:
[10]:

[11]:

[11]:

Scikit-Criteria Documentation, Release 0.8.7.dev0

)
dm
autonomy[0.50] comfort[0.05]
car 0 1
car 1 4

[2 Alternatives x 3 Criterial

Manipulating the Data

price[0.45]

(continued from previous page)

The data object are immutable, if you want to modify it you need create a new one. All the data are stored as pandas

dataframes and numpy arrays

You can access to the different parts of your data, simply by typing dm.<your-parameter-name> for example:

dm.matrix # note how this data ignores the objectives and the weights

Criteria autonomy comfort price
Alternatives

car 0 1 3
car 1 4 5 6

dm.objectives

autonomy MAX
comfort MAX
price MIN
Name: Objectives, dtype: object

dm.weights

autonomy 0.50
comfort 0.05
price 0.45

Name: Weights, dtype: float64

dm.alternatives, dm.criteria

(_ACArray(['car 0', 'car 1'], dtype=object),

_ACArray(['autonomy', 'comfort', 'price'], dtype=object))

If you want (for example) change the names of the cars from car ® and car 1; to Vil and Ford you must the copy

method and provide the new names:

dm = dm.copy(alternatives=["VW", "Ford"])

dm

autonomy[0.50] comfort[0.05]
Vi 1
Ford 4

[2 Alternatives x 3 Criterial]

2
5

price[0.45]

Note:

12

Chapter 4. Contents

https://pandas.pydata.org/
https://pandas.pydata.org/
https://docs.scipy.org/doc/numpy/user/basics.creation.html

Scikit-Criteria Documentation, Release 0.8.7.dev0

For more complex matiluations you can use the dm.iloc[x], dm.loc[x] and dm[x] interface.

Plotting
The Data structure support some basic routines for plotting.
The default scikit criteria uses the Heatmap plot to visualize all the data.

[127: dm.plot()

[12]: <AxesSubplot:xlabel='Criteria', ylabel='Alternatives'>

Alternatives

Ford

i i 1
autonomy & comfort & price ¥
Criteria

In the same fashion you can plot the weights of the criteria

[13]: dm.plot.wheatmap()

[13]: <AxesSubplot:xlabel="'Criteria'>

4.2. Tutorials 13

Scikit-Criteria Documentation, Release 0.8.7.dev0
- 0.50

0.5 0.45 0.25

price ¥

Weights
I

I
autonomy & comfort &
Criteria

You can accessing the different kind of plot by passing the name of the plot as first parameter of the method

[14]: dm.plot('"kde™)

[14]: <AxesSubplot:ylabel='Density'>
Criteria
0.05
—— autonomy A
comfort &
—— pricey
0.04
F 0.03
uw
g
0.02
0.01 ~
G.OD T T T T T T T T T
—4 —2 0 2 4 6 a8 10 12

or by using the name as method call inside the plot attribute

[15]: dm.plot.kde()
[15]: <AxesSubplot:ylabel='Density'>

Chapter 4. Contents

14

Scikit-Criteria Documentation, Release 0.8.7.dev0

Criteria
0.05 - \/
—— autonomy A
— comfort &
— pricev¥
0.04 +
_‘-"‘:,'w 0.03 +
7]
g
0.02
0.01 ~
D.OD T T T T T T T T T
—4 -2 0 2 4 3] 8 10 12

Every plot has their own set of parameters, defined by the subjacent function
Let’s change the colors of the weight bar plot and show:

[16]: dm.plot.wbar(cmap="viridis")

[16]: <AxesSubplot:>

4.2. Tutorials

15

[17]:

Scikit-Criteria Documentation, Release 0.8.7.dev0

0.5 1 Criteria
EEE autonomy A
BN comfort &

0.4 price ¥

0.3 1

0.2 1

0.1 1

0.0

Weights

Data transformation

Data in its current form is difficult to understand and analyze. On one hand they are out of scale, and on the other they
have both minimizing and maximizing criteria.

Note: Scikit-Criteria objective preference

For a design decision Scikit-Criteria always prefers Maximize objectives. There are some functionalities that trigger
warnings against Minimize criteria, and others that directly and others directly fail.

To solve these problems, we will use two processors:

* First InvertMinimize which inverts the minimizing objectives. by dividing out the inverse of each criterion
value (1/C)).

* Second, SumScaler which will divide each criterion value by the total sum of the criteria, taking all of them
into the range [0, 1].

First we start by importing the two necessary modules.

from skcriteria.preprocessing import invert_objectives, scalers

Data in its current form is difficult to understand and analyze. The first thing we must do now is to reverse the maxi-
mization criteria.

16 Chapter 4. Contents

[18]:

[18]:

[19]:

[19]:

[20]:

Scikit-Criteria Documentation, Release 0.8.7.dev0

This involves:
1. Create the transformer and store it in the inverter variable.

2. Apply the transformation by calling the transform method of the transformer and passing it as parameter our
decision matrix dm.

3. Save the transformed decision matrix in a new variable dmt.

In code:

inverter = invert_objectives.InvertMinimize()
dmt = inverter.transform(dm)

dmt

autonomy[0.50] comfort[0.05] price[0.45]
v 1 2 0.333333
Ford 4 5 0.166667

[2 Alternatives x 3 Criterial]

The next step is to scale the values between [0, 1] using the SumScaler.
For this step we need

1. Create the transformer and store it in the inverter variable. In this case the scalers support a parameter called
target which can have three different values:

e target="matrix" The matrix A is normalized.
e target="weights" normalizes the weights w.
e target="both" normalizes matrix A and weights w.
In our case we are going to ask the scaler to scale both components of the decision matrix (target="both")

2. Apply the transformation by calling the transform method of the transformer and passing it as parameter our
decision matrix dmt.

3. Save the transformed decision by overwriting the variable dmt.

scaler = scalers.SumScaler(target="both")
dmt = scaler.transform(dmt)

dmt

autonomy[0.50] comfort[0.05] price[0.45]
v 0.2 0.285714 0.666667
Ford 0.8 0.714286 0.333333

[2 Alternatives x 3 Criterial]

Now we can analyze if the matrix graphically by creating a graph for the matrix, and another for the weights.

Note: Advanced plots with Matplotlib

If you need more information on how to make graphs using Matplotlib please che this tutorial https://matplotlib.org/
stable/tutorials/index

we are going to user matplotlib capabilities of creat multiple figures
import matplotlib.pyplot as plt

we create 2 axis with the same y axis

(continues on next page)

4.2. Tutorials 17

https://matplotlib.org/stable/tutorials/index
https://matplotlib.org/stable/tutorials/index

[21]:

Scikit-Criteria Documentation, Release 0.8.7.dev0

(continued from previous page)

fig, axs = plt.subplots(l, 2, figsize=(12, 5), sharey=True)

in the first axis we plot the criteria KDE
dmt.plot.kde(ax=axs[0])
axs[0].set_title("Criteria")

in the second axis we plot the weights as bars
dmt.plot.wbar(ax=axs[1])
axs[1].set_title("Weights")

adjust the layout of the figute based on the content
fig.tight_layout()

Criteria Weights

Criteria
EEE autonomy A
mm comfort A
I price A

0.5 1 Criteria R
—— autonomy &
—— comfort A
—— price A

Density

Weights

Using this data to feed some MCDA methods

Weighted Sum Model

Let’s rank our dummy data by Weighted Sum Model

First we need to import the required module

from skcriteria.agg import simple

To use the methods of MCDA structure we proceed in the same way as when using transformers:
1. We create the decision maker and store it in some variable (dec in our case).
2. Execute the evaluate () method inside the decision maker to create the result.

3. We store the result in some variable (rank in our case).

Note: Hyper-parameters

Some multi-criteria methods support “hyper parameters”, which are provided at the time of creation of the decision
maker.

18 Chapter 4. Contents

https://en.wikipedia.org/wiki/Weighted_sum_model

[22]:

[22]:

[23]:
[23]:

[24]:
[24]:

[25]:
[25]:

[26]:
[26]:

[27]:
[27]:

Scikit-Criteria Documentation, Release 0.8.7.dev0

We will see an example with the ELECTRE-1 method later on.

dec = simple.WeightedSumModel ()
rank = dec.evaluate(dmt) # we use the tansformed version of the data
rank

Alternatives VW Ford

Rank 2 1

[Method: WeightedSumModel]

We can see that WeightedSumModel prefers the alternative Ford over the VW.

We can access the intermediate calculators of the method through the e_ attribute of the result object., which (in the
case of WeightedSumModel) contains the resulting scores

rank.e_

<extra {'score'}>

rank.e_.score

array([0.41428571, 0.58571429])

Obviously you can acces all the parts of the ranking as attributes of result object

rank.rank_

array([2, 11)

rank.alternatives

array(['VW', 'Ford'], dtype=object)

rank.method

'WeightedSumModel'

Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS)

The following example will be approached with the TOPSIS. This method was chosen because of its popularity and
because it uses another scaling technique (VectorScaler).

So the first thing one would intuitively do is to invert the original matrix criteria (dm) and then apply the normalization;
but if we have several matrices or several methods this solution becomes cumbersome.

The proposed solution of Scikiz-Criteria is to offer pipelines. The pipelines combine one or several transformers and
one decision-maker the facilitate the execution of the experiments.

So, let’s import the necessary modules for TOPSIS and the pipelines:

Distances and InvertMinimize

Since TOPSIS uses distances as a comparison metric, it is not recommended to use the InvertMinimize trans-
former. Instead we use NegateMinimize.

4.2. Tutorials 19

https://en.wikipedia.org/wiki/TOPSIS

[28]:

[29]:

[29]:

[30]:

[30]:

[31]:

Scikit-Criteria Documentation, Release 0.8.7.dev0

from skcriteria.agg import similarity # here lives TOPSIS
from skcriteria.pipeline import mkpipe # this function is for create pipelines

The trick is that the weights still need to be scaled with SumScaler so be careful to assign the targets correctly in each
transformer.

pipe = mkpipe(
invert_objectives.NegateMinimize(),
scalers.VectorScaler(target="matrix"), # this scaler transform the matrix
scalers.SumScaler(target="weights"), # and this transform the weights
similarity.TOPSISQ),

)

pipe

<SKCPipeline [steps=[('negateminimize', <NegateMinimize []>), ('vectorscaler',
—<VectorScaler [target='matrix']>), ('sumscaler', <SumScaler [target='weights']>), (
—'topsis', <TOPSIS [metric='euclidean']>)]1]>

Now we can directly call the pipeline evaluate () method with the original decision-matrix (dm).

This method sequentially executes the three transformers and finally the evaluator to obtain a result

rank = pipe.evaluate(dm)
rank

Alternatives VW Ford
Rank 2 1
[Method: TOPSIS]

print(rank.e_)
print("Ideal:", rank.e_.ideal)

print("Anti-Ideal:", rank.e_.anti_ideal)
print("Similarity index:", rank.e_.similarity)
<extra {'similarity', 'ideal', 'anti_ideal'}>

Ideal: [0.48507125 ©0.04642383 -0.20124612]
Anti-Ideal: [0.12126781 0.01856953 -0.40249224]
Similarity index: [0.35548671 0.64451329]

Where the ideal and anti_ideal are the normalizated sintetic better and worst altenatives created by TOPSIS, and
the similarity is how far from the anti-ideal and how closer to the ideal are the real alternatives

ELimination et Choix Traduisant la REalité (ELECTRE)

For our final example, we are going to use the method ELECTRE-I which has two particularities:
1. It does not return a ranking but a kernel.
2. It supports two hyper-parameters: a concordance threshold p and a discordance threshold g.

Let’s test the default threshold (p=0.65, g=0.35) but with two normalizations for different matrix: VectorScaler
and SumScaler.

For this we will make two pipelines

20 Chapter 4. Contents

https://en.wikipedia.org/wiki/%C3%89LECTRE

[32]:

[33]:

[33]:

[34]:

[34]:

Scikit-Criteria Documentation, Release 0.8.7.dev0

from skcriteria.agg import electre

pipe_vector = mkpipe(
invert_objectives.InvertMinimize(),
scalers.VectorScaler(target="matrix"), # this scaler transform the matrix
scalers.SumScaler(target="weights"), # and this transform the weights
electre.ELECTRE1(p=0.65, g=0.35),

)

pipe_sum = mkpipe(
invert_objectives.InvertMinimize(),
scalers.SumScaler(target="weights"), # transform the matrix and weights
electre.ELECTRE1(p=0.65, g=0.35),

kernel_vector = pipe_vector.evaluate(dm)
kernel_vector

Alternatives VW Ford
Kernel True True
[Method: ELECTRE1]

kernel_sum = pipe_sum.evaluate(dm)
kernel_sum

Alternatives VW Ford
Kernel True True
[Method: ELECTRE1]

As can be seen for this case both scalings give the same results

Generated by nbsphinx from a Jupyter notebook. 2024-02-09T19:34:46.636173

4.2.2 Dominance and satisfaction analysis (AKA filters)

This tutorial provides a practical overview of how to use scikit-criteria for satisfaction and dominance analysis, as well
as the creation of filters for data cleaning.

Case
In order to decide to purchase a series of bonds, a company studied five candidate investments: PE, JN, AA, FX, MM
and GN.
The finance department decides to consider the following criteria for selection. selection:
1. ROE: Return percentage. Sense of optimality, M aximize.
2. CAP: Market capitalization. Sense of optimality, M aximize.

3. RI: Risk. Sense of optimality, Minimize.

4.2. Tutorials 21

https://nbsphinx.readthedocs.io/
https://jupyter.org/

[1]:

[17:

[1:

Scikit-Criteria Documentation, Release 0.8.7.dev0

The full decision matrix

import skcriteria as skc

dm = skc.mkdm(

matrix=[
[7, 5, 351,
[5, 4, 26],
[5, 6, 28],
[3, 4, 361,
[1, 7, 30],
[5, 8, 301,

1,

objectives=[max, max, min],
alternatives=["PE", "JN", "AA", "FX", "MM", "FN"],
criteria=["ROE", "CAP", "RI"],

)
dm
ROE[1.0] CAP[1.0] RI[1.0]

PE 7 5 35
IN 5 4 26
AA 5 6 28
FX 3 4 36
MM 1 7 30
FN 5 8 30

[6 Alternatives x 3 Criterial

Satisfaction analysis

It is reasonable to think that any decision-maker would want to set “satisfaction thresholds” for each criterion, in such
a way that alternatives that do not exceed the thresholds in any criterion are eliminated.

The basic idea was proposed in the work of “A Behavioral Model of Rational Choice”
[Simon, 1955] and presents the definition of “aspiration levels” and are set a priori by the decision maker.

For our example we will assume that the decision-maker only accepts alternatives with ROE >= 2

For this analysis we will need the skcriteria.preprocessing.filters module .

from skcriteria.preprocessing import filters

The filters are transformers and works as follows:

* At the moment of construction they are provided with a dict that as a key has the name of a criterion, and as a
value the condition to be satisfied.

* Optionally it receives a parameter ignore_missing_criteria which if it is set to False (default value) fails
any attempt to transform an decision matrix that does not have any of the criteria.

* For an alternative not to be eliminated the alternative has to pass all filter conditions.

22 Chapter 4. Contents

[1:

[1:

[1:

[1:

Scikit-Criteria Documentation, Release 0.8.7.dev0

The simplest filter consists of instances of the class filters.Filters, which as a value of the configuration dict,
accepts functions that are applied to the corresponding criteria and returns a mask where the True values denote the
alternatives that we want to keep.

To write the function that filters the alternatives where $ROE >= 2.

def roe_filter(v):
return v >= 2 # criteria are numpy.ndarray

flt = filters.Filter({"ROE": roe_filter})
flt

<Filter [criteria_filters={'ROE': <function roe_filter at 0x7fb3£922aa70>}, ignore_
—missing_criteria=False]>

However, scikit-criteria offers a simpler collection of filters that implements the most common operations of
equality, inequality and inclusion a set.

In our case we are interested in the FilterGE class, where GE stands for Greater or Equal.

So the filter would be defined as

flt = filters.FilterGE({"ROE": 2})
flt

<FilterGE [criteria_filters={'ROE': 2}, ignore_missing_criteria=False]>

The way to apply the filter to a DecisionMatriz, is like any other transformer:

dmf = flt.transform(dm)

dmf

ROE[1.0] CAP[1.0] RI[1.0]
PE 7 5 35
IN 5 4 26
AA 5 6 28
FX 3 4 36
FN 5 8 30

[5 Alternatives x 3 Criteria]

As can be seen, we eliminated the alternative MM which did not comply with an ROE >= 2.

If on the other hand (to give an example) we would like to filter out the alternatives ROE > 3 and CAP > 4 (using
the original matrix), we can use the filter FilterGT where GT is Greater Than.

filters.FilterGT({"ROE": 3, "CAP": 4}).transform(dm)
ROE[1.0] CAP[1.0] RI[1.0]

PE 7 5 35
AA 5 6 28
FN 5 8 30

[3 Alternatives x 3 Criterial]

Note:

If it is necessary to filter the alternatives by two separate conditions, a pipeline can be used. An example of this can be
seen below, where we combine a satisficing and a dominance filter

4.2. Tutorials 23

Scikit-Criteria Documentation, Release 0.8.7.dev0

The complete list of filters implemented by Scikit-Criteria is:

e filters.Filter: Filter alternatives according to the value of a criterion using arbitrary functions.

filters.Filter({"criterion": lambda v: v > 1})

e filters.FilterGT: Filter Greater Than (>).

filters.FilterGT({"criterion": 13})

e filters.FilterGE: Filter Greater or Equal than (>=).

filters.FilterGE({"criterion": 2})

e filters.FilterLT: Filter Less Than (<).

filters.FilterLT({"criterion": 1})

e filters.FilterLE: Filter Less or Equal than (<=).

filters.FilterLE({"criterion": 2})

e filters.FilterEQ: Filter Equal (==).

filters.FilterEQ({"criterion": 13})

e filters.FilterNE: Filter Not-Equal than (! =).

filters.FilterNE({"criterion": 2})

e filters.FilterIn: Filter if the values is in a set (€).

filters.FilterIn({"criterion": [1, 2, 31})

o filters.FilterNotIn: Filter if the values is not in a set (¢).

filters.FilterNotIn({"criterion": [1, 2, 3]})

Dominance

An alternative Ay is said to dominate an alternative A; (Ag > Ap), if Ag is equal in all criteria and better in at least
one criterion. On the other hand, A strictly dominate A; (Ag > ‘A;). :math:‘A;(Ag > Aj), if Ay is better on all
criteria than A;.

Under this same train of thought, an alternative that dominates all others is called a “dominant alternative”. If there is
a dominant alternative, it is undoubtedly the best choice, as long as a full ranking is not required.

On the other hand, an alternative is dominated if there exists at least one other alternative that dominates it. If a
dominated alternative exists and a consigned ordering is not desired, it must be removed from the set of decision
alternatives.

Generally only the non-dominated or efficient alternatives are the interested ones.

24 Chapter 4. Contents

[1:

[1:

[1:

[1:

Scikit-Criteria Documentation, Release 0.8.7.dev0

Scikit-Criteria dominance analysis

Scikit-criteria, contains a number of tools within the attribute, DecisionMatrix.dominance, useful for the evaluation
of dominant and dominated alternatives.

For example, we can access all the dominated alternatives by using the dominated method

dmf.dominance.dominated()

Alternatives
PE False
IN False
AA False
FX True
FN False

Name: Dominated, dtype: bool

It can be seen with this, that FX is an dominated alternative. In addition if we want to know which are the strictly
dominated alternatives we need to provide the strict parameter to the method:

dmf.dominance.dominated(strict=True)

Alternatives
PE False
IN False
AA False
FX True
FN False

Name: Strictly dominated, dtype: bool

It can be seen that FX is strictly dominated by at least one other alternative.
If we wanted to find out which are the dominant alternatives of FX, we can opt for two paths:

1. List all the dominant/strictly dominated alternatives of FX using dominator_of()
dmf.dominance.dominators_of("FX", strict=True)
array(['PE', '"AA', 'FN'], dtype=object)

2. Use dominance()/dominance.dominance() to see the full relationship between all alternatives.

dmf.dominance(strict=True) # equivalent to dmf.dominance.dominance ()

Strictly dominated PE IN AA FX FN
Strict dominators

PE False False False True False
IN False False False False False
AA False False False True False
FX False False False False False
FN False False False True False

the result of the method is a DataFrame that in each cell has a True value if the row alternative dominates the column
alternative.

If this matrix is very large: we can, for example, visualize it

4.2. Tutorials 25

https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.html

[1:

[1:

Scikit-Criteria Documentation, Release 0.8.7.dev0

dmf.plot.dominance(strict=True);

Strict dominators

=0/

=0

Strictly dominated

Finally we can see how each of the alternatives relate to each other dominatnes with FX using compare().

for dominant in

dmf.dominance.dominators_of("FX"):
display(dmf.dominance.compare(dominant, 'FX'))

Criteria Performance
ROE CAP RI
Alternatives PE True True True 3
FX False False False 0
Equals False False False 0
Criteria Performance
ROE CAP RI
Alternatives IN True False True 2
FX False False False 0
Equals False True False 1
Criteria Performance
ROE CAP RI
Alternatives AA True True True 3
FX False False False 0
Equals False False False 0
Criteria Performance
ROE CAP RI
(continues on next page)
26 Chapter 4. Contents

[1:

[1:

[1:

Scikit-Criteria Documentation, Release 0.8.7.dev0

Alternatives FN True True True 3
FX False False False 0
Equals False False False 0

Filter non-dominated alternatives

(continued from previous page)

Finally skcriteria offers a way to filter non-dominated alternatives, which it accepts as a parameter if you want to

evaluate strict dominance.

flt = filters.FilterNonDominated(strict=True)
flt

<FilterNonDominated [strict=True]l>

flt.transform(dmf)
ROE[1.0] CAP[1.0] RI[1.0]

PE 7 5 35
IN 5 4 26
AA 5 6 28
FN 5 8 30

[4 Alternatives x 3 Criteria]

Full expermient

We can finally create a complete MCDA experiment that takes into account the in satisfaction and dominance analysis.

The complete experiment would have the following steps

1. Eliminate alternatives that do not yield at least 2% ($ROE >= $2).
Eliminate dominated alternatives.
Convert all criteria to maximize.

The weights are scaled by the total sum.

A e

The matrix is scaled by the vector modulus.
6. Apply TOPSIS.

The most convenient way to do this is to use a pipeline.

from skcriteria.preprocessing import scalers, invert_objectives
from skcriteria.agg.similarity import TOPSIS
from skcriteria.pipeline import mkpipe

pipe = mkpipe(
filters.FilterGE({"ROE": 2}),
filters.FilterNonDominated(strict=True),
invert_objectives.NegateMinimize(),
scalers.SumScaler(target="weights"),
scalers.VectorScaler(target="matrix"),
TOPSISQ),

(continues on next page)

4.2. Tutorials

27

https://en.wikipedia.org/wiki/TOPSIS

[1:

Scikit-Criteria Documentation, Release 0.8.7.dev0

(continued from previous page)

)

pipe

<SKCPipeline [steps=[('filterge', <FilterGE [criteria_filters={'ROE': 2}, ignore_missing_
—criteria=False]>), ('filternondominated', <FilterNonDominated [strict=Truel>), (

- 'negateminimize', <NegateMinimize []>), ('sumscaler', <SumScaler [target='weights']>),.
—('vectorscaler', <VectorScaler [target='matrix']>), ('topsis', <TOPSIS [metric=
—'euclidean']>)]]>

We now apply the pipeline to the original data

pipe.evaluate(dm)

Alternatives PE JIN AA FN
Rank 3 4 2 1
[Method: TOPSIS]

Generated by nbsphinx from a Jupyter notebook. 2024-02-09T19:34:46.636173

4.2.3 Rankings comparison

This tutorial provides an overview of the use of the Scikit-Criteria ranking comparison tools.

Motivation

It is interesting to note that there are many different aggregation functions (TOPSIS, WeightedSum, MOORA, etc.),
which summarize multiple criteria with quite different heuristics to a single analysis dimension; if we add to this the
different preprocessing (scaling, weight calculation, optimality sense transformation, etc), the approaches to compute
rankings are numerous.

The question then arises:

What is the best approach MCDM is the best?

What defines that an approach is the best?
We can think of some desirable characteristics for all decision algorithms:
* Be easy to understand.
* That the representation of the problem is consistent.
* That at the minimum change of weights everything does not change abruptly.
» That any new alternative that is incorporated does not distort the ranking too much.
This ends up defining a Paradox in which
The choice of the best multi-criteria method is a multi-criteria problem.
To solve this problem we can use three different options

* Compare rankings manually.

28 Chapter 4. Contents

https://nbsphinx.readthedocs.io/
https://jupyter.org/

[17:

[2]:

[2]:

[3]:

Scikit-Criteria Documentation, Release 0.8.7.dev0

» Exploiting the concept of inversion of the rankings.
* Sensitivity analysis.

In this tutorial we will focus on the first option.

Tools to compare rankings manually

As of Scikit-Criteria 0.8 there is a class and a function named cmp . RanksComparator and mkrank_cmp, which con-
sume multiple rankings and provide tools for analysis and visualization for correlation, regression and direct comparison
of results.

To use them we must import them from the cmp module.

from skcriteria.cmp import RanksComparator, mkrank_cmp

Experiment setup

First we need a dataset, lets use the decision-matrix extracted from from historical time series cryptocurrencies with
windows_size=7.

import skcriteria as skc

dm = skc.datasets.load_van202levaluation(windows_size=7)

dm
XxRV[1.0] sRV[1.0] XVV[1.0] sVV[1.0] xR2[1.0] \
ADA 0.029 0.156 8.144000e+09 1.586000e+10 0.312
BNB 0.033 0.167 6.141000e+09 1.118000e+10 0.396
BTC 0.015 0.097 2.095000e+11 1.388000e+11 0.281
DOGE 0.057 ®.399 8.287000e+09 2.726000e+10 0.327
ETH 0.023 0.127 1.000000e+11 8.054000e+10 0.313
LINK 0.040 0.179 6.707000e+09 1.665000e+10 0.319
LTC 0.015 0.134 2.513000e+10 1.731000e+10 0.320
XLM 0.013 0.176 4.157000e+09 5.469000e+09 0.321
XRP 0.014 0.164 2.308000e+10 2.924000e+10 0.322
xm[1.0]

ADA 1.821000e-11

BNB 9.167000e-09

BTC 1.254000e-08

DOGE 1.459000e-12

ETH 1.737000e-09

LINK 1.582000e-09

LTC 1.816000e-09

XLM 1.876000e-11

XRP 7.996000e-12
[9 Alternatives x 6 Criterial]

Now let’s create three different options to evaluate our alternatives: One based on WeightedSumModel, another one
based on WeightedProductModel and a final one using TOPSIS.

from skcriteria.pipeline import mkpipe
from skcriteria.preprocessing.invert_objectives import (

(continues on next page)

4.2. Tutorials 29

[4]:

Scikit-Criteria Documentation, Release 0.8.7.dev0

InvertMinimize,
NegateMinimize,

)

from skcriteria.preprocessing.filters import FilterNonDominated
from skcriteria.preprocessing.scalers import SumScaler, VectorScaler

(continued from previous page)

from skcriteria.agg.simple import WeightedProductModel, WeightedSumModel
from skcriteria.agg.similarity import TOPSIS

ws_pipe = mkpipe(
InvertMinimize(),
FilterNonDominated(),
SumScaler(target="weights"),
VectorScaler(target="matrix"),

WeightedSumModel (),

)

wp_pipe = mkpipe(
InvertMinimize(),
FilterNonDominated(),

SumScaler(target="weights"),
VectorScaler(target="matrix"),
WeightedProductModel (),

)

tp_pipe = mkpipe(
NegateMinimize(),
FilterNonDominated(),

SumScaler(target="weights"),
VectorScaler(target="matrix"),
TOPSISQ),

Now let’s run the three options and visualize the rankings

wsum_result = ws_pipe.evaluate(dm)
wprod_result = wp_pipe.evaluate(dm)
tp_result = tp_pipe.evaluate(dm)

display(wsum_result, wprod_result, tp_result)

Alternatives ADA BNB BTC DOGE ETH

Rank 8 2 1 7
[Method: WeightedSumModel]

3

Alternatives ADA BNB BTC DOGE ETH

Rank 6 2 1 9
[Method: WeightedProductModell]

3

Alternatives ADA BNB BTC DOGE ETH

Rank 6 2 1 8
[Method: TOPSIS]

5

LINK LTC
5 6
LINK LTC
5 4
LINK LTC
3 4

XLM

XLM

XLM

XRP

XRP

XRP

30

Chapter 4. Contents

[5]:
[5]:

[6]:

[6]:

[77:

[7]:

[8]:
[8]:

[9]:
[9]:

[10]:

Scikit-Criteria Documentation, Release 0.8.7.dev0

Creating a RanksComparator instance

There are two ways to create the ranks comparators:

1. Rither we use the RanksComparator class giving a sequence [[("name®", rank®), ("namel”, rankl),

., ("nameN", rankN)]

RanksComparator([("ts", tp_result), ("ws", wsum_result), ("wp", wprod_result)])

<RanksComparator [ranks=['ts', 'ws', 'wp'l]l>

2. we let the names be inferred from the methods with the mkrank_cmp () function

rcmp = mkrank_cmp(tp_result, wsum_result, wprod_result)

rcmp

<RanksComparator [ranks=['TOPSIS', 'WeightedSumModel', 'WeightedProductModel']]>

RankComparator utilities

A set of useful statistics is provided to compare correlations, trends and covariances between the different rankings.

We can start by looking at the correlations

rcmp.corr() # by default the pearson correlation is used

Method TOPSIS WeightedSumModel WeightedProductModel
Method

TOPSIS 1.000000 0.783333 0.916667
WeightedSumModel 0.783333 1.000000 0.816667

WeightedProductModel 0.916667

0.816667 1.000000

rcmp.corr (method="kendall") # or we can us the kendal correlation

Method TOPSIS WeightedSumModel WeightedProductModel
Method

TOPSIS 1.000000 0.666667 0.777778
WeightedSumModel 0.666667 1.000000 0.666667
WeightedProductModel 0.777778 0.666667 1.000000
Covariances are also available

rcmp . cov()

Method TOPSIS WeightedSumModel WeightedProductModel
Method

TOPSIS 7.500 5.875 6.875
WeightedSumModel 5.875 7.500 6.125
WeightedProductModel 6.875 6.125 7.500

And the R? score (the same as the linear regression) between rankings

rcmp.r2_score()

4.2. Tutorials

31

[10]:

[11]:

[11]:

[12]:
[12]:

[13]:

[13]:

[14]:
[14]:

Scikit-Criteria Documentation, Release 0.8.7.dev0

Method TOPSIS WeightedSumModel WeightedProductModel
Method

TOPSIS 1.000000 0.566667 0.833333
WeightedSumModel 0.566667 1.000000 0.633333
WeightedProductModel 0.833333 0.633333 1.000000

Another thing available is to analyze how far one ranking is from the other.

By default the Hamming distance is used, but any of the available “scipy.spatial.distance.pdist() <https:
/Idocs.scipy.org/doc/scipy/reference/generated/scipy.spatial.distance.pdist.html#scipy.spatial.distance.pdist>"___ func-

tions can be used.

rcmp . distance()

Method TOPSIS WeightedSumModel WeightedProductModel
Method

TOPSIS 0.000000 0.666667 0.444444
WeightedSumModel 0.666667 0.000000 0.555556
WeightedProductModel 0.444444 0.555556 0.000000
rcmp.distance(metric="cityblock")

Method TOPSIS WeightedSumModel WeightedProductModel
Method
TOPSIS 0.0 12.0 6.0
WeightedSumModel 12.0 0.0 10.0
WeightedProductModel 6.0 10.0 0.0
A distance function can also be provided
def my_distance(u,v,w=None):

return 42
rcmp.distance(metric=my_distance)
Method TOPSIS WeightedSumModel WeightedProductModel
Method
TOPSIS 0.0 42.0 42.0
WeightedSumModel 42.0 0.0 42.0
WeightedProductModel 42.0 42.0 0.0

Finally, if all this is insufficient, we can turn the comparator into a pandasDataFrame

rcmp . to_dataframe()

Method TOPSIS WeightedSumModel WeightedProductModel
Alternatives

ADA 6 8 6
BNB 2 2 2
BTC 1 1 1
DOGE 8 7 9
ETH 5 3 3
LINK 3 5 5
LTC 4 6 4
XLM 7 4 7
XRP 9 9 8
32 Chapter 4. Contents

https://en.wikipedia.org/wiki/Hamming_distance
https://docs.scipy.org/doc/scipy/reference/generated/scipy.spatial.distance.pdist.html#scipy.spatial.distance.pdist
https://docs.scipy.org/doc/scipy/reference/generated/scipy.spatial.distance.pdist.html#scipy.spatial.distance.pdist

Scikit-Criteria Documentation, Release 0.8.7.dev0

RankComparator Plots!

The other set of analysis tools are obviously the visualization tools.

A classic in the area Ranking flows

[15]: rcmp.plot.flow();

g_

T
e
[iF]
0
A
[~
(]
=
=
uw
S
=
m
e
---= LINK
7 UG e .
-=== XLM
1 XRP
T T T
TOPSIS WeightedSumModel WeightedProductModel

Method

We can also run regressions on all combinations of different rankings.

[16]: rcmp.plot.reg(r2=True, r2_fmt=".3f");

4.2. Tutorials

33

Scikit-Criteria Documentation, Release 0.8.7.dev0

104 ® x=TOPSIS, y=WeightedSumModel - R?=0.567
x=TOPSIS, y=WeightedProductModel - R? =0.833
e x=WeightedsumModel, y=WeightedProductModel - R?=0.633
B —
—
i)
B
[1B]
=]
E &
i
=
o
2 -
=
=
>
2 —
D —

1 2 3 4 5 6 7 8 9
'x' Ranks (lower is better)

There are also bar plots

[17]: import matplotlib.pyplot as plt
fig, axs = plt.subplots(l, 2, figsize=(20, 5))

rcmp.plot.bar(ax=axs[0])
rcmp.plot.barh(ax=axs[1])

fig.tight_layout();

Method XRP
m—TOPSIS
§ == WeightedSumModel M
== WeightedProductModel

Ranks (lower is better)

Method
- TOPSIS

<
3
<

BTC

BNB.

= WeightedSumModel

- Veig

DOGE
ETH
UNK
e
XM
XRP

Alternatives

8

and boxplots

[18]: fig, axs = plt.subplots(l, 2, figsize=(20, 5))

(continues on next page)

34 Chapter 4. Contents

[19]:

[20]:

Scikit-Criteria Documentation, Release 0.8.7.dev0

(continued from previous page)

rcmp.plot.box(ax=axs[0])
rcmp.plot.box(ax=axs[1], orient="h")

fig.tight_layout();

9

o~
Alternatives

-

Ranks (lower is better)

-
Cml -

ADA BNB. BTC DOGE ETH UNK e XLM XRP 1 2 3 4 5 6 7 8 9
Alternatives Ranks (lower is better)

And you can visualize all matrices with statistical heatmap-like plots.
fig, axs = plt.subplots(l, 3, figsize=(19, 7))

for kind, ax in zip(["heatmap", "cov", "corr"], axs):
rcmp.plot(kind, ax=ax)

ax.set_title(kind.title())

fig.tight_layout()

Heatmap

-9 - 1.000
3 7.4
3 :
-8 [} 0 -0.975
2 2 - 2 -
& S 7.2 5
-0.950
o -7
Q
@ 7.0
w T 0925
G 8 9 6%
g 8 E 688 <
g o o 2 o 0.900 2
. o g 5 B kS
£k ¢ § 5 3 3
8 2 = 663 = g
<y P S 08758
3 at
& = z
3 6.4] 0.850
g s s
3 S S
=] 6.2] 0.825
54
2
o 9 g 9 6.0 0.800
%
.] . 1]]
0 5 5 5 = 0 5 5
o 3 3 3 3 @] 3
S 2 2 2 2 S 2 2
= E g E g = E g
a 3 a 3 3 3
% 8 % 8 3 8
2 [2 [2 [
5 g) 3 5 E
£ 5 g S g H
2 2 2
Method Method Method

fig, axs = plt.subplots(l, 2, figsize=(19, 7))

for kind, ax in zip(["r2_score", "distance"], axs):
rcmp.plot(kind, ax=ax)
ax.set_title(kind.title())

fig.tight_layout()

4.2. Tutorials 35

[17:

Scikit-Criteria Documentation, Release 0.8.7.dev0

R2_Score Distance

-06

TOPSIS
TOPSIS

-05

°
S

Method
R
Method
Hamming distance

°
w

0.75

0.70 02

tModel
tModel

0.65
0.1

0.60 =

0.0

TOPSIS WeightedSumModel WeightedProductModel TOPSIS WeightedSumModel WeightedProductModel

Method Method

Generated by nbsphinx from a Jupyter notebook. 2024-02-09T19:34:46.636173

4.2.4 Extending Aggregation and Transformation Functions

This tutorial serves as a guide for utilizing the extension tools for aggregation and transformer functions in Scikit-
Criteria. After going through this tutorial, you will be able to implement your own multi-criteria decision models
compatible with the data types and tools provided by the library.

1. Introduction

In Scikit-Criteria, leveraging the provided decorators (@extend.mkagg and @extend.mktransformer) for extending
aggregation and transformation functions provides a powerful means to customize decision-making models allowing
the creation of custom functions, enabling domain-specific logic implementation for diverse use cases.

Decorators simplify the process of converting functions into model classes, promoting flexibility in model creation
without complex class hierarchies. This facilitates quick prototyping and experimentation by allowing direct modifica-
tion of functions. Additionally, the decorators handle hyperparameter initialization, encapsulating them within models,
promoting clean, organized code and reducing the chances of errors related to parameter handling.

Example Usage:

Import the decorators from the module
from skcriteria.extend import mkagg, mktransformer

Define custom aggregation and transformation functions
@Gmkagg
def CustomAggregation(**kwargs):

Implement aggregation logic

pass

@mktransformer

def CustomTransformation(**kwargs):
Implement transformation logic
pass

36 Chapter 4. Contents

https://nbsphinx.readthedocs.io/
https://jupyter.org/

[2]:

[3]:

[4]:

Scikit-Criteria Documentation, Release 0.8.7.dev0

While this code is syntactically valid, attempting to use it may not work as intended since it doesn’t return the required
values.

2. A New Aggregation Model

To create a custom aggregation model, follow these steps:

1. Declare a function with the name of your model using the CapWords/UpperCamelCase/PascalCase convention.
While this is not mandatory, not adhering to this convention will trigger a warning message from scikit-criteria,
notifying that the model name does not follow the Scikit-Criteria standard.

@mkagg
def bad_model_name(**kwargs) :
pass

/home/juanbc/proyectos/skcriteria/src/skcriteria/extend.py:211: NonStandardNameWarning:..
—Models names should normally use the 'CapWords' convention.try change 'bad_model_name'.
—»to 'Bad_Model Name' or 'BAD_MODEL_NAME'

return _agg_maker if maybe_func is None else _agg_maker (maybe_func)

@Gmkagg
def GodModelName (**kwargs) :
pass

2. The function should take parameters representing the decomposed decision matrix after calling the
DecisionMatrix.to_dict() method, and a parameter hparams, which will be explained later and contains
the hyper-parameters of the model.

* hparams: Model Hyperparameters.

e matrix: Alternatives matrix as numpy array.

* objectives: numpy array of objectives for criteria as integers: mazrimize = 1 and minimize = —1.
* weights: Weights of the criteria as numpy array.

e dtypes: Data types of the criteria as numpy array.

* alternatives: Names of the alternatives as numpy array.

e criteria: Names of the criteria as numpy array.

Additionally, if you do not want to use any of those parameters of the matrix, you can declare the function with Variable
Keyword Arguments (**kwargs).

If any parameter is forgotten and **kwargs is not present, a TypeError is raised.
So this next two functions are a valid Aggregation functions
@mkagg

def AllParameters(hparams, matrix, objectives, weights, dtypes, alternatives, criteria):
pass

@Gmkagg

def OnlyTwoWithKwargs(matrix, weights, **kwargs):
pass

3. Utilizing the received parameters, the function should return two objects:

4.2. Tutorials 37

https://en.wikipedia.org/wiki/Camel_case
https://www.w3schools.com/python/gloss_python_function_arbitrary_keyword_arguments.asp
https://www.w3schools.com/python/gloss_python_function_arbitrary_keyword_arguments.asp
https://docs.python.org/3/library/exceptions.html#TypeError

[5]:

[6]:

Scikit-Criteria Documentation, Release 0.8.7.dev0

1. Anumpy.array/list/tuple or any kind of sequence containing a valid ranking. Where the i-th position
in the returned sequence has the ranking value for the i-th alternative in the array of alternatives received
as a parameter.

2. A dict with extra values from the ranking (intermediate results or other useful data for decision-making
analysis).

Note: Understanding the Rankings
A valid ranking has the following conditions:
1. Length: It should have the same length as the number of alternatives received by the function.

2. Ascending and Consecutive Order: The values must be in ascending order and consecutive. This means that
values should start from 1 and increase by increments of 1 without skips For example, [1, 2, 3, 4] and [1,
2, 1] isvalid, but [4, 2, 4, 1] isnot valid because the value 3 is missing.

3. Integers Only: Values must be integers. Fractional or other types of values are not allowed.

So if we have the alternatives ["banana", "apple", "orange"] and the ranking [1, 2, 1]
The meaning of the ranking in relation to the alternatives is as follows:

1. The first position in the ranking is 1, indicating that the alternative in the first position is the most preferred or
the best choice.

2. The second position in the ranking is 2, suggesting that the alternative in the second position is the second-best
choice.

3. The third position in the ranking is also 1, implying that the alternative in the third position is equally preferred
to the alternative in the first position.

Therefore, the ranking [1, 2, 1] could be interpreted as stating that “Banana” and “Orange” are equally preferred,
and “Apple” is the second preferred choice. It’s important to note that the ranking must adhere to the specific conditions
mentioned in the definitions, such as the correct length, ascending and consecutive order, and integer values.

With all of this, a complete and valid aggregation function would be:

import numpy as np

@Gmkagg

def AllAlternativesAreFirst(alternatives, **kwargs):
Assign a rank of 1 to each alternative
rank = [1] * len(alternatives)

Define extra information (example: some important value)
extra = {"some_important_value": "the_important_value"}

Return the rank and extra information
return rank, extra

Let’s test the new aggregation with a dataset.

import skcriteria as skc
dm = skc.datasets.load_simple_stock_selection() # load the dataset
dm

38 Chapter 4. Contents

[6]:

[7]:

[77:

[8]:

[8]:

[9]:
[9]:

[10]:

[10]:

[11]:
[11]:

Scikit-Criteria Documentation, Release 0.8.7.dev0

ROE[2.0] CAP[4.0] RI[1.0]

PE 7 5 35
IN 5 4 26
AA 5 6 28
FX 3 4 36
MM 1 7 30
GN 5 8 30

[6 Alternatives x 3 Criteria]

Instantiate the new aggregation
agg = AllAlternativesAreFirst()

agg
<AllAlternativesAreFirst []>

evaluate
rank = agg.evaluate(dm)
rank

Alternatives PE JIN AA FX MM GN
Rank 1 1 1 1 1 1
[Method: AllAlternativesAreFirst]

rank.e_.some_important_value

'the_important_value'

3. Hyperparameters

The Hyper-parameters (in the context of machine learning) are parameters that allow you to specify details on how
the function will carry out its aggregation. In this sense, they are more similar to Free-Parameters as they cannot be

predicted or constrained by the model.

In Scikit-Criteria, we define the concept of Hyper-parameters similar to the Hyper-parameters in Scikit-Learn: Param-
eters received by the model’s (Aggregation function class) constructor and always should have some default value.

For example, in the case of Scikit-Criteria’s implementation of TOPSIS, it has a hyper-parameter for the metric it will

use, and by default, it is set to "euclidean".

from skcriteria.agg import similarity
similarity.TOPSIS()

<TOPSIS [metric='euclidean']>

similarity.TOPSIS(metric="cityblock")

<TOPSIS [metric='cityblock']>

The hyper-parameters can be provided as named parameters to the @mkagg decorator, and their values can be accessed

using the hparams parameter.

Note: Regarding the nature of hparams

If you are familiar with how methods work in Python classes, hparams is essentially the self of the model.

4.2. Tutorials

39

https://en.wikipedia.org/wiki/Hyperparameter_(machine_learning)
https://en.wikipedia.org/wiki/Free_parameter
https://en.wikipedia.org/wiki/TOPSIS

[12]:

[13]:

[13]:

[14]:
[14]:

Scikit-Criteria Documentation, Release 0.8.7.dev0

Now, for example, if we want to create a model named MaybeWSM, which is a weighted-sum-model that uses weights
only when the use_weight hyperparameter is set to True, and the default value is indeed True.

import numpy as np
from skcriteria.utils import rank

@mkagg (use_weights=True)
def MaybeWSM(hparams, matrix, objectives, weights, **kwargs):
"""The Maybe-Weighted Sum Model (WSM) to rank alternatives.

If the use_weights parameter in hparams is set to True, the
function applies weights to the decision matrix. This is done
by taking the inner product of the matrix and the weights vector.

e

Check if objectives contain -1 (minimize objectives)
if -1 in objectives:
raise ValueError("'MaybeWSM' cant operate with minimize objectives™)

If use_weights is True, apply weights to the matrix
if hparams.use_weights:
matrix = matrix * weights

Calculate the scores by row/alternative
score = np.sum(matrix, axis=1)

rank_values calculates the ranking based on the scores.

‘reverse = True' indicates that higher scores are closer to the 1st place.
Additionally, we will return the calculated 'score' as extra information.
return rank.rank_values(score, reverse=True), {"score": score}

Let’s use our MaybeWSM model.

First, let’s see what happens if we create a MaybeWSM with the default (use_weights=True) and try to evaluate the
available decision matrix (dm).

with_useweight = MaybeWSM(Q)
with_useweight

<MaybeWSM [use_weights=True]>

If we use dm as it is right now, we will get an exception: 'MaybeWSM' can't operate with minimize
objectives because, indeed, dm has some criteria to minimize.

dm.minwhere # the critetia to minimize

ROE False
CAP False
RI True

Name: minwhere, dtype: bool

For this reason, first, we will use the InvertMinimize transformer to eliminate criteria to minimize.

40 Chapter 4. Contents

https://en.wikipedia.org/wiki/Weighted_sum_model

[15]:

[15]:

[16]:

[16]:

[17]:

[17]:

[18]:

[18]:

[19]:
[19]:

Scikit-Criteria Documentation, Release 0.8.7.dev0

from skcriteria.preprocessing import invert_objectives

dm = invert_objectives.InvertMinimize() .transform(dm)
dm.minwhere

ROE False
CAP False
RI False

Name: minwhere, dtype: bool

rank_with_uw = with_useweight.evaluate(dm)
rank_with_uw

Alternatives PE JN AA FX MM GN
Rank 3 5 2 6 4 1
[Method: MaybeWSM]

Now, let’s try use_weights=False.

without_useweight = MaybeWSM(use_weights=False)
without_useweight

<MaybeWSM [use_weights=False]>

rank_without_uw = without_useweight.evaluate(dm)
rank_without_uw

Alternatives PE JN AA FX MM GN
Rank 2 4 3 6 5 1
[Method: MaybeWSM]

It can be seen that depending on the configuration of the hyperparameter use_weights, the results are different.

In addition to this, the score is available within extra_.

rank_with_uw.e_.score, rank_without_uw.e_.score

(array([34.02857143, 26.03846154, 34.03571429, 22.02777778, 30.03333333,
42.03333333]),

array([12.02857143, 9.03846154, 11.03571429, 7.02777778, 8.03333333,
13.03333333]1))

3. A New Transformer

The only difference between creating a new aggregator and a transformer lies in the type of data returned by the
decorated function. Everything else is exactly the same (received parameters, function names, and functionality of
hyperparameters).

The decorated function must return a dictionary that can have the same keys as the parameters received by the function
except for hparam: matrix, objectives, weights, dtypes, alternatives, or criteria; and whose values must
be the new values with which to replace the original ones in the transformation matrix.

It is not necessary to return all values; only the ones that you want to change.

For example, if we want to create a transformer StrFormat that converts the text of the names of each criterion and
alternative using the methods of str, and by default, it converts texts to lowercase.

4.2. Tutorials 41

Scikit-Criteria Documentation, Release 0.8.7.dev0

[20]: @mktransformer (operation=str.lower)
def StrFormat(alternatives, criteria, hparams, **kwargs):
"""Applies a string formatting operation (lowercasing by default) to alternatives.
—and criteria."""
Apply the string formatting operation to each alternative
new_alternatives = [hparams.operation(a) for a in alternatives]

Apply the string formatting operation to each criterion
new_criteria = [hparams.operation(c) for c in criteria]

Return the transformed alternatives and criteria in a dictionary
return {"alternatives": new_alternatives, "criteria": new_criteria}

trans = StrFormat()
trans

[20]: <StrFormat [operation=<method 'lower' of 'str' objects>]>

[21]: trans.transform(dm)

[21]: roe[2.0] «cap[4.0] ri[1.0]
pe 7 5 0.028571
jn 5 4 0.038462
aa 5 6 0.035714
fx 3 4 0.027778
mm 1 7 0.033333
gn 5 8 0.033333

[6 Alternatives x 3 Criterial

We can use any function provided by str.

[22]: trans = StrFormat(operation=str.capitalize)
trans

[22]: <StrFormat [operation=<method 'capitalize' of 'str' objects>]>

[23]: trans.transform(dm)

[23]: Roe[2.0] Cap[4.0] Ri[1.0]
Pe 7 5 0.028571
IJn 5 4 0.038462
Aa 5 6 0.035714
Fx 3 4 0.027778
Mm 1 7 0.033333
Gn 5 8 0.033333

[6 Alternatives x 3 Criteria]

In fact, given our implementation, any arbitrary function that converts text can be used. For example, if we want to
create our own function that adds exclamation marks to the end of each criterion and alternative.

[24]: def add_exclamation(text):
return text + " Il "

trans = StrFormat(operation=add_exclamation)
trans

42 Chapter 4. Contents

[24]:

[25]:
[25]:

[26]:

[26]:

[27]:

[27]:

[28]:

Scikit-Criteria Documentation, Release 0.8.7.dev0

<StrFormat [operation=<function add_exclamation at 0x79a56af36f80>]>

trans. transform(dm)

ROE !l [2.0] CAP !!l [4.0] RI I! [1.0]
PE ! 7 5 0.028571
JN ! 5 4 0.038462
AA ! 5 6 0.035714
FX ! 3 4 0.027778
MM o1 1 7 0.033333
GN !! 5 8 0.033333

[6 Alternatives x 3 Criterial

3.1 Special considerations regarding dtypes

By design decision, scikitcriteria always attempts to always preserve the original data types, unless it needs to infer
them again.

This may not seem important to a user at first glance, so let’s use an example of a transformer affected by this charac-
teristic.

First, let’s reload the original decision matrix, where the values of all criteria are int.

dm = skc.datasets.load_simple_stock_selection()

dm
ROE[2.0] CAP[4.0] RI[1.0]

PE 7 5 35
IN 5 4 26
AA 5 6 28
FX 3 4 36
MM 1 7 30
GN 5 8 30

[6 Alternatives x 3 Criterial

Now, let’s create a transformer that converts all criteria to the £1oat type.

@mktransformer

def AsFloat(matrix, **kwargs):
"""Converts the elements of a decision-matrix to floating-point numbers.
Convert the elements of the matrix to floating-point numbers
new_matrix = matrix.astype(float)

e

Return the transformed matrix in a dictionary
return {"matrix": new_matrix}

trans = AsFloat()
trans

<AsFloat [I>

Now, let’s test its functionality.

trans. transform(dm)

4.2. Tutorials 43

Scikit-Criteria Documentation, Release 0.8.7.dev0

[28]: ROE[2.0] CAP[4.0] RI[1.0]
PE 7 5 35
IN 5 4 26
AA 5 6 28
FX 3 4 36
MM 1 7 30
GN 5 8 30

[6 Alternatives x 3 Criteria]

As can be seen, the numbers are still integers. This is because the dtypes parameter of the matrix indicates that those
columns are indeed integers.

[29]: dm.dtypes # check the dtypes

[29]: ROE int64
CAP int64
RI int64
dtype: object

The simplest solution would be to ensure that the dtypes are inferred again based on the values of the new matrix. This
is achieved by assigning the dtype values to None.

[30]: @mktransformer
def AsFloat(matrix, **kwargs):
"""Converts the elements of a decision-matrix to floating-point numbers.
Convert the elements of the matrix to floating-point numbers
new_matrix = matrix.astype(float)

i

Return the transformed matrix in a dictionary
and assign the dtypes as None
return {"matrix": new_matrix, "dtypes": None}

trans = AsFloat()
trans. transform(dm)

[30]: ROE[2.0] CAP[4.0] RI[1.0]
PE 7.0 5.0 35.0
IN 5.0 4.0 26.0
AA 5.0 6.0 28.0
FX 3.0 4.0 36.0
MM 1.0 7.0 30.0
GN 5.0 8.0 30.0

[6 Alternatives x 3 Criterial
While this may seem somewhat inconvenient, it gives the user complete control over the data types of the matrix without
assuming default behaviors that may be undesirable.

It’s essential to consider that the original dtypes are also received by the transformer (in our case, they are inside
**kwargs) and can be used to determine the new types.

Generated by nbsphinx from a Jupyter notebook. 2024-02-09T19:34:46.636173

44 Chapter 4. Contents

https://nbsphinx.readthedocs.io/
https://jupyter.org/

Scikit-Criteria Documentation, Release 0.8.7.dev0

4.2.5 Extra tutorials

This section is a collection of articles, blog-posts and other curated materials, written outside of core developers.

4.2.6 Scientific articles

Scientific articles or paper is an academic work that is usually published in an academic journal. It contains original
research results or reviews existing results. Such a paper, also called an article, will only be considered valid if it
undergoes a process of peer review by one or more referees who check that the content of the paper is suitable for
publication in the journal [Wikipedia contributors, 2023].

Several bibliographic databases organize digital collections of references to published literature, including journal and
newspaper articles and conference proceedings. The following links contain publications that cite the Scikit-Criteria
paper [Cabral et al., 2016], and present novel applications of multi-criteria models to different scientific areas.

See also:

If you’re new to Python, you might want to start by getting an idea of what the language is like. Scikit-criteria is 100%
Python, so if you’ve got minimal comfort with Python you’ll probably get a lot more out of our project.

If you’re new to programming entirely, you might want to start with this list of Python resources for non-programmers

If you already know a few other languages and want to get up to speed with Python quickly, we recommend Dive Into
Python. If that’s not quite your style, there are many other books about Python.

At last, if you’re already familiar with Python and eager to explore the scientific stack further, be sure to check out the
Scipy Lecture Notes

4.3 skcriteria package

Scikit-Criteria is a collections of algorithms, methods and techniques for multiple-criteria decision analysis.

4.3.1 skcriteria.core package

Core functionalities and structures of skcriteria.

skcriteria.core.data module

Data abstraction layer.

This module defines the DecisionMatrix object, which internally encompasses the alternative matrix, weights and
objectives (MIN, MAX) of the criteria.

class skcriteria.core.data.DecisionMatrix(data_df, objectives, weights)
Bases: DiffEqualityMixin

Representation of all data needed in the MCDA analysis.

This object gathers everything necessary to represent a data set used in MCDA:
¢ An alternative matrix where each row is an alternative and each column is of a different criteria.
* An optimization objective (Minimize, Maximize) for each criterion.

* A weight for each criterion.

4.3. skcriteria package 45

https://wiki.python.org/moin/BeginnersGuide/NonProgrammers
http://www.diveintopython3.net/
http://www.diveintopython3.net/
https://wiki.python.org/moin/PythonBooks
http://www.scipy-lectures.org/

Scikit-Criteria Documentation, Release 0.8.7.dev0

* An independent type of data for each criterion
DecisionMatrix has two main forms of construction:

1. Use the default constructor of the DecisionMatrix class pandas.DataFrame where the index
is the alternatives and the columns are the criteria; an iterable with the objectives with the same
amount of elements that columns/criteria has the dataframe; and an iterable with the weights also
with the same amount of elements as criteria.

>>> import pandas as pd
>>> from skcriteria import DecisionMatrix, mkdm

>>> data_df = pd.DataFrame(

[ry, 2, 31, [4, 5, 611,
index=["AQ", "A1"],

. columns=["CO", "C1", "C2"]
vee)
>>> objectives = [min, max, min]
>>> weights = [1, 1, 1]

>>> dm = DecisionMatrix(data_df, objectives, weights)

>>> dm

CO[1.0] C1[1.0] C2[1.0]
A® 1 2 3
Al 4 5 6

[2 Alternatives x 3 Criterial]

2. Use the classmethod DecisionMatrix.from_mcda_data which requests the data in a more natural way for
this type of analysis (the weights, the criteria / alternative names, and the data types are optional)

>>> DecisionMatrix.from_mcda_data(
(f1, 2, 31, [4, 5, 611,
[min, max, min],

; [1, 1, 11D

CO[1.0] C1[1.0] C2[1.0]
A® 1 2 3
Al 4 5 6

[2 Alternatives x 3 Criterial

For simplicity a function is offered at the module level analogous to from_mcda_data called
mkdm (make decision matrix).

Parameters

e data_df (pandas.DatFrame) — Dataframe where the index is the alternatives and the
columns are the criteria.

» objectives (numpy.ndarray) — Aan iterable with the targets with sense of optimality of
every criteria (You can use any alias defined in Objective) the same length as columns/criteria
has the data_df.

* weights (numpy.ndarray) — An iterable with the weights also with the same amount of
elements as criteria.

46 Chapter 4. Contents

Scikit-Criteria Documentation, Release 0.8.7.dev0

classmethod from_mcda_data(matrix, objectives, *, weights=None, alternatives=None, criteria=None,
dtypes=None)

Create a new DecisionMatrix object.

This method receives the parts of the matrix, in what conceptually the matrix of alternatives is usually
divided

Parameters

e matrix (Iterable) — The matrix of alternatives. Where every row is an alternative and
every column is a criteria.

* objectives (Iterable) — The array with the sense of optimality of every criteria. You
can use any alias provided by the objective class.

weights (Iterable o None (default None)) — Optional weights of the criteria. If is None all
the criteria are weighted with 1.

¢ alternatives (Iterable o None (default None)) — Optional names of the alternatives. If
is None, al the alternatives are names “A[n]” where n is the number of the row of matrix
statring at 0.

criteria (Iterable o None (default None)) — Optional names of the criteria. If is None, al
the alternatives are names “C[m]” where m is the number of the columns of matrix statring
at 0.

¢ dtypes (Iterable o None (default None)) — Optional types of the criteria. If is None, the
type is inferred automatically by pandas.

Returns
A new decision matrix.

Return type
DecisionMatrix

Example

>>> DecisionMatrix.from_mcda_data(
(fx, 2, 31, [4, 5, 611,
[min, max, min],

: [1, 1, 11D

CO[1.0] C1[1.0] C2[1.0]
AQ 1 2 3
Al 4 5 6

[2 Alternatives x 3 Criterial

For simplicity a function is offered at the module level analogous to from_mcda_data called mkdm (make
decision matrix).

4.3. skcriteria package 47

Scikit-Criteria Documentation, Release 0.8.7.dev0

Notes
This functionality generates more sensitive defaults than using the constructor of the DecisionMatrix class
but is slower.

property alternatives

Names of the alternatives.
From this array you can also access the values of the alternatives as pandas.Series.

property criteria

Names of the criteria.

From this array you can also access the values of the criteria as pandas. Series.
property weights

Weights of the criteria.
property objectives

Objectives of the criteria as Objective instances.

property minwhere
Mask with value True if the criterion is to be minimized.

property maxwhere
Mask with value True if the criterion is to be maximized.

property iobjectives
Objectives of the criteria as int.
* Minimize = Objective.MIN.value
¢ Maximize = Objective. MAX.value
property matrix
Alternatives matrix as pandas DataFrame.
The matrix excludes weights and objectives.
If you want to create a DataFrame with objectives and weights, use DecisionMatrix.to_dataframe()
property dtypes
Dtypes of the criteria.

property plot

Plot accessor.

property stats

Descriptive statistics accessor.

property dominance
Dominance information accessor.
copy (**kwargs)
Return a deep copy of the current DecisionMatrix.
This method is also useful for manually modifying the values of the DecisionMatrix object.

Parameters
kwargs — The same parameters supported by from_mcda_data(). The values provided
replace the existing ones in the object to be copied.

48 Chapter 4. Contents

Scikit-Criteria Documentation, Release 0.8.7.dev0

Returns
A new decision matrix.

Return type
DecisionMatrix

to_dataframe()
Convert the entire DecisionMatrix into a dataframe.

The objectives and weights ara added as rows before the alternatives.

Returns
A Decision matrix as pandas DataFrame.

Return type
pd.DataFrame

Example

>>> dm = DecisionMatrix.from_mcda_data(

>>> dm
[ri, 2, 31, [4, 5, 611,
[min, max, min],
. [1, 1, 1)
CO[1.0] C1[1.0] C2[1.0]
AQ 1 2 3
Al 4 5 6

>>> dm.to_dataframe()

Cco C1 C2
objectives MIN MAX MIN
weights 1.0 1.0 1.0
A® 1 2 3
Al 4 5 6

to_dict(
Return a dict representation of the data.

All the values are represented as numpy array.

describe (**kwargs)
Generate descriptive statistics.

Descriptive statistics include those that summarize the central tendency, dispersion and shape of a dataset’s
distribution, excluding NaN values.

Parameters
pandas.DataFrame.describe() . (Same parameters as)-—

Returns
Summary statistics of DecisionMatrix provided.

Return type
pandas.DataFrame

property shape
Return a tuple with (number_of_alternatives, number_of_criteria).

dm.shape <==> np.shape(dm)

4.3. skcriteria package 49

Scikit-Criteria Documentation, Release 0.8.7.dev0

diff (other, rtol=1e-05, atol=1e-08, equal_nan=True, check_dtypes=False)

Return the difference between two objects within a tolerance.
This method should be implemented by subclasses to define how differences between objects are calculated.

The tolerance parameters rtol and atol, equal_nan, and check_dtypes are provided to be used by the numpy
and pandas equality functions. These parameters allow you to customize the behavior of the equality com-
parison, such as setting the relative and absolute tolerance for numeric comparisons, considering NaN
values as equal, and checking for the data type of the objects being compared.

Parameters
¢ other (object) — The object to compare to.
e rtol (float, optional) - The relative tolerance parameter. Default is 1e-05.
e atol (float, optional)— The absolute tolerance parameter. Default is 1e-08.

¢ equal_nan (bool, optional)— Whether to consider NaN values as equal. Default is
True.

* check_dtypes (bool, optional) - Whether to check the data type of the objects. De-
fault is False.

Returns
The difference between the current and the other object.

Return type
the_diff

See also:

equals, aequals, numpy.isclose(), numpy.all(), numpy.any(), numpy.equal(), numpy.
allclose()

Notes
The tolerance values are positive, typically very small numbers. The relative difference (rtol * abs(b)) and
the absolute difference atol are added together to compare against the absolute difference between a and b.

NaNss are treated as equal if they are in the same place and if equal_nan=True. Infs are treated as equal
if they are in the same place and of the same sign in both arrays.

property loc
Access a group of alternatives and criteria by label(s) or a boolean array.

.loc[] is primarily alternative label based, but may also be used with a boolean array.

Unlike DataFrames, iloc * of DecisionMatrix always returns an instance of DecisionMatrix.
property iloc

Purely integer-location based indexing for selection by position.

.iloc[] is primarily integer position based (from 0 to length-1 of the axis), but may also be used with
a boolean array.

Unlike DataFrames, iloc * of DecisionMatrix always returns an instance of DecisionMatrix.

skcriteria.core.data.mkdm(matrix, objectives, *, weights=None, alternatives=None, criteria=None,
dtypes=None)

Create a new DecisionMatrix object.

This method receives the parts of the matrix, in what conceptually the matrix of alternatives is usually divided

50 Chapter 4. Contents

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

Scikit-Criteria Documentation, Release 0.8.7.dev0

Parameters

e matrix (Iterable) — The matrix of alternatives. Where every row is an alternative and
every column is a criteria.

objectives (Iterable)— The array with the sense of optimality of every criteria. You can
use any alias provided by the objective class.

weights (Iterable o None (default None)) — Optional weights of the criteria. If is None all
the criteria are weighted with 1.

alternatives (Iterable o None (default None)) — Optional names of the alternatives. If
is None, al the alternatives are names “A[n]” where n is the number of the row of matrix
statring at 0.

criteria (Iterable o None (default None)) — Optional names of the criteria. If is None, al
the alternatives are names “C[m]” where m is the number of the columns of matrix statring
at 0.

dtypes (Iterable o None (default None)) — Optional types of the criteria. If is None, the type
is inferred automatically by pandas.

Returns
A new decision matrix.

Return type
DecisionMatrix

Example

>>> DecisionMatrix.from_mcda_data(
[[1, 2’ 3]1 [4’ 5, 6]],
[min, max, min],

[1, 1, 11
CO[1.0] C1[1.0] C2[1.0]
A0 1 2 3
Al 4 5 6

[2 Alternatives x 3 Criterial]

For simplicity a function is offered at the module level analogous to from_mcda_data called mkdm (make deci-
sion matrix).

Notes

This functionality generates more sensitive defaults than using the constructor of the DecisionMatrix class but
is slower.

4.3. skcriteria package 51

Scikit-Criteria Documentation, Release 0.8.7.dev0

skcriteria.core.dominance module

Dominance helper for the DecisionMatrix object.

class skcriteria.core.dominance.DecisionMatrixDominanceAccessor (dm)

Bases: AccessorABC
Calculate basic statistics of the decision matrix.

bt
Compare on how many criteria one alternative is better than another.

bt = better-than.

Returns
Where the value of each cell identifies on how many criteria the row alternative is better than
the column alternative.

Return type
pandas.DataFrame

eqO
Compare on how many criteria two alternatives are equal.

Returns
Where the value of each cell identifies how many criteria the row and column alternatives are
equal.

Return type
pandas.DataFrame

dominance (*, strict=False)

Compare if one alternative dominates or strictly dominates another alternative.

In order to evaluate the dominance of an alternative a0 over an alternative al, the algorithm evaluates that
a0 is better in at least one criterion and that a/ is not better in any criterion than a0. In the case that strict
= True it also evaluates that there are no equal criteria.

Parameters
strict (bool, default False) — If True, strict dominance is evaluated.

Returns
Where the value of each cell is True if the row alternative dominates the column alternative.

Return type
pandas.DataFrame

compare (a0, al)
Compare two alternatives.

It creates a summary data frame containing the comparison of the two alternatives on a per-criteria basis,
indicating which of the two is the best value, or if they are equal. In addition, it presents a “Performance”
column with the count for each case.

Parameters
* a0 (str) — Names of the alternatives to compare.
* al (str) — Names of the alternatives to compare.

Returns
Comparison of the two alternatives by criteria.

52

Chapter 4. Contents

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Scikit-Criteria Documentation, Release 0.8.7.dev0

Return type
pandas.DataFrame

dominated(*, strict=False)
Which alternative is dominated or strictly dominated by at least one other alternative.

Parameters
strict (bool, default False) — If True, strict dominance is evaluated.

Returns
Where the index indicates the name of the alternative, and if the value is is True, it indicates
that this alternative is dominated by at least one other alternative.

Return type
pandas.Series

dominators_of = <methodtools._LruCacheWire object>
has_loops (*, strict=False)
Retorna True si la matriz contiene loops de dominacia.

A loop is defined as if there are alternatives a0, al and ‘a2’ such that “a0 al a2 a0” if strict=True, or
“a0 al a2 a0”if strict=False

Parameters
strict (bool, default False) — If True, strict dominance is evaluated.

Returns
If True a loop exists.

Return type
bool

Notes

If the result of this method is True, the dominators_of() method raises a RecursionError for at least
one alternative.

skcriteria.core.methods module

Core functionalities of scikit-criteria.

class skcriteria.core.methods.SKCMethodABC
Bases: object

Base class for all class in scikit-criteria.

Notes

All subclasses should specify:
e _skcriteria_dm_type: The type of the decision maker.
* _skcriteria_parameters: Availebe parameters.
e _skcriteria_abstract_class: If the class is abstract.

If the class is abstract all validations are turned off.

4.3. skcriteria package 53

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#object

Scikit-Criteria Documentation, Release 0.8.7.dev0

get_method_name()

Return the name of the method as string.

get_parameters()

Return the parameters of the method as dictionary.

copy (**kwargs)

Return a custom copy of the current decision-maker.
This method is also useful for manually modifying the values of the object.

Parameters
kwargs — The same parameters supported by object constructor. The values provided replace
the existing ones in the object to be copied.

Return type
A new object.

skcriteria.core.objectives module

Definition of the objectives (MIN, MAX) for the criteria.

class skcriteria.core.objectives.Objective (value)

Bases: Enum
Representation of criteria objectives (Minimize, Maximize).

MIN = -1

Internal representation of minimize criteria
MAX =1

Internal representation of maximize criteria

classmethod from_alias(alias)
Return a n objective instase based on some given alias.

to_symbol ()
Return the printable symbol representation of the objective.

classmethod construct_from_alias(alias)

Return an objective instance based on some given alias.
Deprecated since version 0.8: Use Objective. from_alias() instead.

to_string()

Return the printable representation of the objective.

skcriteria.core.plot module

Plot helper for the DecisionMatrix object.

class skcriteria.core.plot.DecisionMatrixPlotter (dm)

Bases: AccessorABC
DecisionMatrix plot utilities.
Kind of plot to produce:

* ‘heatmap’ : criteria heat-map (default).

54 Chapter 4. Contents

https://docs.python.org/3/library/enum.html#enum.Enum

Scikit-Criteria Documentation, Release 0.8.7.dev0

* ‘wheatmap’ : weights heat-map.

e ‘bar’ : criteria vertical bar plot.

* ‘wbar’ : weights vertical bar plot.

e ‘barh’ : criteria horizontal bar plot.

e ‘wbarh’ : weights horizontal bar plot.

e ‘hist’ : criteria histogram.

e ‘whist’ : weights histogram.

e ‘box’ : criteria boxplot.

e ‘wbox’ : weights boxplot.

* ‘kde’ : criteria Kernel Density Estimation plot.

* ‘wkde’ : weights Kernel Density Estimation plot.

* ‘ogive’ : criteria empirical cumulative distribution plot.
* ‘wogive’ : weights empirical cumulative distribution plot.
* ‘area’ : criteria area plot.

* ‘dominance’: the dominance matrix as a heatmap.

» ‘frontier’: criteria pair-wise Pareto-Frontier.

heatmap (**kwargs)
Plot the alternative matrix as a color-encoded matrix.
Parameters

**kwargs — Additional keyword arguments are passed and are documented in seaborn.
heatmap.

Return type
matplotlib.axes.Axes or numpy.ndarray of them
wheatmap (**kwargs)
Plot weights as a color-encoded matrix.
Parameters

**kwargs — Additional keyword arguments are passed and are documented in seaborn.
heatmap.

Return type
matplotlib.axes.Axes or numpy.ndarray of them

bar (**kwargs)

Criteria vertical bar plot.

A bar plot is a plot that presents categorical data with rectangular bars with lengths proportional to the
values that they represent. A bar plot shows comparisons among discrete categories. One axis of the plot
shows the specific categories being compared, and the other axis represents a measured value.

Parameters
**kwargs — Additional keyword arguments are passed and are documented in DataFrame.
plot.bar.

Return type
matplotlib.axes.Axes or numpy.ndarray of them

4.3.

skcriteria package 55

Scikit-Criteria Documentation, Release 0.8.7.dev0

wbar (**kwargs)
Weights vertical bar plot.
A bar plot is a plot that presents categorical data with rectangular bars with lengths proportional to the

values that they represent. A bar plot shows comparisons among discrete categories. One axis of the plot
shows the specific categories being compared, and the other axis represents a measured value.

Parameters
**kwargs — Additional keyword arguments are passed and are documented in DataFrame.
plot.bar.

Return type
matplotlib.axes.Axes or numpy.ndarray of them
barh (**kwargs)
Criteria horizontal bar plot.
A bar plot is a plot that presents categorical data with rectangular bars with lengths proportional to the

values that they represent. A bar plot shows comparisons among discrete categories. One axis of the plot
shows the specific categories being compared, and the other axis represents a measured value.

Parameters
**kwargs — Additional keyword arguments are passed and are documented in DataFrame.
plot.barh.

Return type
matplotlib.axes.Axes or numpy.ndarray of them

wbarh (**kwargs)
Weights horizontal bar plot.
A bar plot is a plot that presents categorical data with rectangular bars with lengths proportional to the

values that they represent. A bar plot shows comparisons among discrete categories. One axis of the plot
shows the specific categories being compared, and the other axis represents a measured value.

Parameters

**kwargs — Additional keyword arguments are passed and are documented in DataFrame.
plot.barh.

Return type
matplotlib.axes.Axes or numpy.ndarray of them

hist (**kwargs)

Draw one histogram of the criteria.

A histogram is a representation of the distribution of data. This function groups the values of all given
Series in the DataFrame into bins and draws all bins in one matplotlib.axes.Axes.

Parameters
**kwargs — Additional keyword arguments are passed and are documented in seaborn.
histplot.

Return type
matplotlib.axes.Axes or numpy.ndarray of them

whist (**kwargs)
Draw one histogram of the weights.

A histogram is a representation of the distribution of data. This function groups the values of all given
Series in the DataFrame into bins and draws all bins in one matplotlib.axes.Axes.

56 Chapter 4. Contents

Scikit-Criteria Documentation, Release 0.8.7.dev0

Parameters
**kwargs — Additional keyword arguments are passed and are documented in seaborn.
histplot.

Return type
matplotlib.axes.Axes or numpy.ndarray of them

box (**kwargs)
Make a box plot of the criteria.

A box plot is a method for graphically depicting groups of numerical data through their quartiles.
For further details see Wikipedia’s entry for boxplot.

Parameters
**kwargs — Additional keyword arguments are passed and are documented in seaborn.
boxplot.

Return type
matplotlib.axes.Axes or numpy.ndarray of them
wbox (**kwargs)
Make a box plot of the weights.

A box plot is a method for graphically depicting groups of numerical data through their quartiles.
For further details see Wikipedia’s entry for boxplot.

Parameters
**kwargs — Additional keyword arguments are passed and are documented in seaborn.
boxplot.

Return type
matplotlib.axes.Axes or numpy.ndarray of them

kde (**kwargs)
Criteria kernel density plot using Gaussian kernels.
In statistics, kernel density estimation (KDE) is a non-parametric way to estimate the probability density

function (PDF) of a random variable. This function uses Gaussian kernels and includes automatic band-
width determination.

Parameters
**kwargs — Additional keyword arguments are passed and are documented in seaborn.
kdeplot.

Return type
matplotlib.axes.Axes or numpy.ndarray of them

wkde (**kwargs)

Weights kernel density plot using Gaussian kernels.

In statistics, kernel density estimation (KDE) is a non-parametric way to estimate the probability density
function (PDF) of a random variable. This function uses Gaussian kernels and includes automatic band-
width determination.

Parameters
**kwargs — Additional keyword arguments are passed and are documented in seaborn.
kdeplot.

Return type
matplotlib.axes.Axes or numpy.ndarray of them

4.3.

skcriteria package 57

https://en.wikipedia.org/wiki/Box_plot
https://en.wikipedia.org/wiki/Box_plot
https://en.wikipedia.org/wiki/Kernel_density_estimation
https://en.wikipedia.org/wiki/Kernel_density_estimation

Scikit-Criteria Documentation, Release 0.8.7.dev0

ogive (**kwargs)
Criteria empirical cumulative distribution plot.
In statistics, an empirical distribution function (eCDF) is the distribution function associated with the em-
pirical measure of a sample. This cumulative distribution function is a step function that jumps up by 1/n

at each of the n data points. Its value at any specified value of the measured variable is the fraction of
observations of the measured variable that are less than or equal to the specified value.

Parameters
**kwargs — Additional keyword arguments are passed and are documented in seaborn.
ecdfplot.

Return type
matplotlib.axes.Axes or numpy.ndarray of them
wogive (**kwargs)
Weights empirical cumulative distribution plot.
In statistics, an empirical distribution function (eCDF) is the distribution function associated with the em-
pirical measure of a sample. This cumulative distribution function is a step function that jumps up by 1/n

at each of the n data points. Its value at any specified value of the measured variable is the fraction of
observations of the measured variable that are less than or equal to the specified value.

Parameters
**kwargs — Additional keyword arguments are passed and are documented in seaborn.
ecdfplot.

Return type
matplotlib.axes.Axes or numpy.ndarray of them

area (**kwargs)

Draw an criteria stacked area plot.
An area plot displays quantitative data visually. This function wraps the matplotlib area function.

Parameters
**kwargs — Additional keyword arguments are passed and are documented in DataFrame.
plot.area().

Returns
Area plot, or array of area plots if subplots is True.

Return type
matplotlib.axes.Axes or numpy.ndarray

dominance (*, strict=False, **kwargs)

Plot dominance as a color-encoded matrix.

In order to evaluate the dominance of an alternative a0 over an alternative al, the algorithm evaluates that
a0 is better in at least one criterion and that a/ is not better in any criterion than a0. In the case that strict
= True it also evaluates that there are no equal criteria.

Parameters
e strict (bool, default False) — If True, strict dominance is evaluated.

o **kwargs — Additional keyword arguments are passed and are documented in seaborn.
heatmap.

Return type
matplotlib.axes.Axes or numpy.ndarray of them

58 Chapter 4. Contents

Scikit-Criteria Documentation, Release 0.8.7.dev0

frontier(x, y, *, strict=False, ax=None, legend=True, scatter_kws=None, line_kws=None)

Pareto frontier on two arbitrarily selected criteria.

A selection of an alternative of an A_o is a pareto-optimal solution when there is no other solution
that selects an alternative that does not belong to A_o such that it improves on one objective without
worsening at least one of the others.

From this point of view, the concept is used to analyze the possible optimal options of a solution given a
variety of objectives or desires and one or more evaluation criteria.

Given a “universe” of alternatives, one seeks to determine the set that are Pareto efficient (i.e., those alter-
natives that satisfy the condition of not being able to better satisfy one of those desires or objectives without
worsening some other). That set of optimal alternatives establishes a “Pareto set” or the “Pareto Frontier”.

The study of the solutions in the frontier allows designers to analyze the possible alternatives within the
established parameters, without having to analyze the totality of possible solutions.

Parameters
* X (str)— Criteria names. Variables that specify positions on the x and y axes.
* y (str) — Criteria names. Variables that specify positions on the x and y axes.

» weighted (bool, default False) — If its True the domination analysis is performed over
the weighted matrix.

e strict (bool, default False) — If True, strict dominance is evaluated.
» weighted - If True, the weighted matrix is evaluated.

* ax (matplotlib.axes.Axes) — Pre-existing axes for the plot. Otherwise, call
matplotlib.pyplot.gca internally.

¢ legend (bool, default True) — If False, no legend data is added and no legend is drawn.

e scatter_kws (dict, default None) — Additional parameters passed to seaborn.
scatterplot.

e scatter_kws - Additional parameters passed to seaborn.lineplot, except for
estimator and sort.

Return type
matplotlib.axes.Axes or numpy.ndarray of them

References

[Wikipedia contributors, 2022b] [Wikipedia contributors, 2022a]

skcriteria.core.stats module

Stats helper for the DecisionMatrix object.

class skcriteria.core.stats.DecisionMatrixStatsAccessor (dm)
Bases: AccessorABC

Calculate basic statistics of the decision matrix.
Kind of statistic to produce:
e ‘corr’ : Compute pairwise correlation of columns, excluding NA/null values.

* ‘cov’ : Compute pairwise covariance of columns, excluding NA/null values.

4.3. skcriteria package 59

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Scikit-Criteria Documentation, Release 0.8.7.dev0

 ‘describe’ : Generate descriptive statistics.

* ‘kurtosis’ : Return unbiased kurtosis over requested axis.

* ‘mad’ : Return the mean absolute deviation of the values over the requested axis.
* ‘max’ : Return the maximum of the values over the requested axis.

e ‘mean’ : Return the mean of the values over the requested axis.

* ‘median’ : Return the median of the values over the requested axis.

* ‘min’ : Return the minimum of the values over the requested axis.

* ‘pct_change’ : Percentage change between the current and a prior element.
e ‘quantile’ : Return values at the given quantile over requested axis.

* ‘sem’ : Return unbiased standard error of the mean over requested axis.

» ‘skew’ : Return unbiased skew over requested axis.

e ‘std’ : Return sample standard deviation over requested axis.

e ‘var’ : Return unbiased variance over requested axis.
mad (axis=0, skipna=True)
Return the mean absolute deviation of the values over a given axis.
Parameters
* axis (int) — Axis for the function to be applied on.

e skipna (bool, default True)-— Exclude NA/null values when computing the result.

4.3.2 skcriteria.agg package

MCDA aggregation methods and internal machinery.

skcriteria.agg._agg_base module

Core functionalities to create madm decision-maker classes.
class skcriteria.agg._agg_base.SKCDecisionMakerABC
Bases: SKCMethodABC
Abstract class for all decisor based methods in scikit-criteria.
evaluate(dm)
Validate the dm and calculate and evaluate the alternatives.

Parameters
dm (skcriteria.data.DecisionMatrix) — Decision matrix on which the ranking will be
calculated.

Returns
Ranking.

Return type
skcriteria.data.RankResult

60 Chapter 4. Contents

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool

Scikit-Criteria Documentation, Release 0.8.7.dev0

class skcriteria.agg._agg_base.ResultABC(method, alternatives, values, extra)
Bases: DiffEqualityMixin
Base class to implement different types of results.

Any evaluation of the DecisionMatrix is expected to result in an object that extends the functionalities of this
class.

Parameters
» method (str)— Name of the method that generated the result.
e alternatives (array-1like)— Names of the alternatives evaluated.

* values (array-1ike) — Values assigned to each alternative by the method, where the i-th
value refers to the valuation of the i-th. alternative.

* extra (dict-1like) — Extra information provided by the method regarding the evaluation
of the alternatives.

property values
Values assigned to each alternative by the method.

The i-th value refers to the valuation of the i-th. alternative.

property method
Name of the method that generated the result.

property alternatives

Names of the alternatives evaluated.

property extra_

Additional information about the result.

Note: e_ is an alias for this property

property e_
Additional information about the result.

Note: e_ is an alias for this property

to_series()
The result as pandas.Series.
property shape
Tuple with (number_of_alternatives,).
rank.shape <==> np.shape(rank)
diff (other, rtol=1e-05, atol=1e-08, equal_nan=False, check_dtypes=False)
Return the difference between two objects within a tolerance.

This method should be implemented by subclasses to define how differences between objects are calculated.

The tolerance parameters rtol and atol, equal_nan, and check_dtypes are provided to be used by the numpy
and pandas equality functions. These parameters allow you to customize the behavior of the equality com-
parison, such as setting the relative and absolute tolerance for numeric comparisons, considering NaN
values as equal, and checking for the data type of the objects being compared.

4.3. skcriteria package 61

https://docs.python.org/3/library/stdtypes.html#str

Scikit-Criteria Documentation, Release 0.8.7.dev0

Parameters
¢ other (object) — The object to compare to.
e rtol (float, optional) - The relative tolerance parameter. Default is 1e-05.
e atol (float, optional)— The absolute tolerance parameter. Default is 1e-08.

¢ equal_nan (bool, optional)— Whether to consider NaN values as equal. Default is
True.

e check_dtypes (bool, optional) - Whether to check the data type of the objects. De-
fault is False.

Returns
The difference between the current and the other object.

Return type
the_diff

See also:

equals, aequals, numpy.isclose(), numpy.all(), numpy.any(), numpy.equal(), numpy.
allclose()

Notes

The tolerance values are positive, typically very small numbers. The relative difference (rzol * abs(b)) and
the absolute difference atol are added together to compare against the absolute difference between a and b.

NaNs are treated as equal if they are in the same place and if equal_nan=True. Infs are treated as equal
if they are in the same place and of the same sign in both arrays.

values_equals (other)

Check if the alternatives and values are the same.
The method doesn’t check the method or the extra parameters.

class skcriteria.agg._agg_base.RankResult (method, alternatives, values, extra)
Bases: ResultABC

Ranking of alternatives.
This type of results is used by methods that generate a ranking of alternatives.
Parameters
* method (str)— Name of the method that generated the result.
e alternatives (array-1ike) — Names of the alternatives evaluated.

* values (array-1ike) — Values assigned to each alternative by the method, where the i-th
value refers to the valuation of the i-th. alternative.

* extra (dict-1like) — Extra information provided by the method regarding the evaluation
of the alternatives.

property has_ties_
Return True if two alternatives shares the same ranking.
property ties_

Counter object that counts how many times each value appears.

62 Chapter 4. Contents

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str

Scikit-Criteria Documentation, Release 0.8.7.dev0

property rank_

Alias for values.

property untied_rank_

Ranking whitout ties.

if the ranking has ties this property assigns unique and consecutive values in the ranking. This method only
assigns the values using the command numpy .argsort (rank_) + 1.

to_series (¥, untied=False)
The result as pandas.Series.

class skcriteria.agg._agg_base.KernelResult (method, alternatives, values, extra)
Bases: ResultABC

Separates the alternatives between good (kernel) and bad.

This type of results is used by methods that select which alternatives are good and bad. The good alternatives
are called “kernel”

Parameters
* method (str) — Name of the method that generated the result.
e alternatives (array-1ike) — Names of the alternatives evaluated.

* values (array-1ike) — Values assigned to each alternative by the method, where the i-th
value refers to the valuation of the i-th. alternative.

* extra (dict-1like) — Extra information provided by the method regarding the evaluation
of the alternatives.

property kernel_

Alias for values.

property kernel_size_

How many alternatives has the kernel.

property kernel_where_

Indexes of the alternatives that are part of the kernel.

property kernelwhere_

Indexes of the alternatives that are part of the kernel.
Deprecated since version 0.7: Use kernel_where_ instead

property kernel_alternatives_
Return the names of alternatives in the kernel.

skcriteria.agg.electre module

ELimination Et Choix Traduisant la REalité - ELECTRE.

ELECTRE is a family of multi-criteria decision analysis methods that originated in Europe in the mid-1960s. The
acronym ELECTRE stands for: ELimination Et Choix Traduisant la REalité (ELimination and Choice Expressing
REality).

Usually the ELECTRE Methods are used to discard some alternatives to the problem, which are unacceptable. After
that we can use another MCDA to select the best one. The Advantage of using the Electre Methods before is that we
can apply another MCDA with a restricted set of alternatives saving much time.

4.3. skcriteria package 63

https://docs.python.org/3/library/stdtypes.html#str

Scikit-Criteria Documentation, Release 0.8.7.dev0

skcriteria.agg.electre.concordance (matrix, objectives, weights)

Calculate the concordance matrix.

skcriteria.agg.electre.discordance (matrix, objectives)

Calculate the discordance matrix.

skcriteria.agg.electre.electrel (matrix, objectives, weights, p=0.65, g=0.35)
Execute ELECTREI without any validation.

class skcriteria.agg.electre.ELECTREL(*, p=0.65, g=0.35)
Bases: SKCDecisionMakerABC

Find a kernel of alternatives through ELECTRE-1.

The ELECTRE I model find the kernel solution in a situation where true criteria and restricted outranking rela-
tions are given.

That is, ELECTRE I cannot derive the ranking of alternatives but the kernel set. In ELECTRE I, two indices
called the concordance index and the discordance index are used to measure the relations between objects

Parameters

* p (float, optional (default=0.65)) — Concordance threshold. Threshold of how
much one alternative is at least as good as another to be significative.

e q (float, optional (default=0.35)) — Discordance threshold. Threshold of how
much the degree one alternative is strictly preferred to another to be significative.

References

[Roy, 1990] [Roy, 1968] [Tzeng & Huang, 2011]

property p
Concordance threshold.

property q
Discordance threshold.

skcriteria.agg.electre.weights_outrank (matrix, weights, objectives)

Calculate a matrix of comparison of alternatives where the value of each cell determines how many times the
value of the criteria weights of the row alternative exceeds those of the column alternative.

Notes
For more information about this matrix please check “Tomada de decisdes em cendrios complexos” [Gomes et
al., 2004], p. 100

skcriteria.agg.electre.electre2 (matrix, objectives, weights, p0=0.65, p1=0.5, p2=0.35, q0=0.65,
q1=0.35)

Execute ELECTRE2 without any validation.
Deprecated since version 0.8: electre2 implementation will change in version after 0.8

class skcriteria.agg.electre.ELECTRE2 (*args, **kwargs)
Bases: SKCDecisionMakerABC

Find the ranking solution through ELECTRE-2.

64 Chapter 4. Contents

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

Scikit-Criteria Documentation, Release 0.8.7.dev0

ELECTRE II was proposed by Roy and Bertier (1971-1973) to overcome ELECTRE I’s inability to produce a
ranking of alternatives. Instead of simply finding the kernel set, ELECTRE II can order alternatives by introduc-
ing the strong and the weak outranking relations.

Deprecated since version 0.8: ELECTRE2 implementation will change in version after 0.8

Notes

This implementation is based on the one presented in the book “Tomada de decisdes em cendrios complexos”
[Gomes et al., 2004].

Parameters

* p® (float, optional (default=0.65, 0.5, 0.35))— Matching thresholds. These
are the thresholds that indicate the extent to which an alternative can be considered equiva-
lent, good or very good with respect to another alternative.

These thresholds must meet the condition “1 >= p0 >=pl >=p2 >=0".

* pl (float, optional (default=0.65, 0.5, 0.35))— Matching thresholds. These
are the thresholds that indicate the extent to which an alternative can be considered equiva-
lent, good or very good with respect to another alternative.

These thresholds must meet the condition “1 >= p0 >=pl >=p2 >=0".

* p2 (float, optional (default=0.65, 0.5, 0.35))— Matching thresholds. These
are the thresholds that indicate the extent to which an alternative can be considered equiva-
lent, good or very good with respect to another alternative.

These thresholds must meet the condition “1 >= p0 >=pl >=p2 >=0".

e g0 (float, optional (default=0.65, 0.35))-Discordance threshold. Threshold of
the degree to which an alternative is equivalent, preferred or strictly preferred to another
alternative.

These thresholds must meet the condition “1 >=q0 >=ql >=0".

e ql (float, optional (default=0.65, 0.35))-Discordance threshold. Threshold of
the degree to which an alternative is equivalent, preferred or strictly preferred to another
alternative.

These thresholds must meet the condition “1 >= q0 >=ql >=0".

References

[Gomes et al., 2004] [Roy & Bertier, 1971] [Roy & Bertier, 1973]
property p0®
Concordance threshold 0.
property pl
Concordance threshold 1.
property p2
Concordance threshold 2.
property q0®
Discordance threshold 0.

4.3. skcriteria package 65

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

Scikit-Criteria Documentation, Release 0.8.7.dev0

property ql
Discordance threshold 1.

skcriteria.agg.moora module

Implementation of a family of Multi-objective optimization on the basis of ratio analysis (MOORA) methods.

skcriteria.agg.moora.ratio(matrix, objectives, weights)

Execute ratio MOORA without any validation.

class skcriteria.agg.moora.RatioMOORA

Bases: SKCDecisionMakerABC
Ratio based MOORA method.

In MOORA the set of ratios are suggested to be normalized as the square roots of the sum of squared responses
as denominators, but you can use any scaler.

These ratios, as dimensionless, seem to be the best choice among different ratios. These dimensionless ratios,
situated between zero and one, are added in the case of maximization or subtracted in case of minimization:

g+1

g
Ny,* = ZNJLL']' — ZNJ)L]
i=1 =1

with: ¢ = 1,2, ..., g for the objectives to be maximized, : = g+ 1, g+ 2, ..., n for the objectives to be minimized.

Finally, all alternatives are ranked, according to the obtained ratios.

References

[Brauers & Zavadskas, 2006]

skcriteria.agg.moora.refpoint (matrix, objectives, weights)

Execute reference point MOORA without any validation.

class skcriteria.agg.moora.ReferencePointMOORA

Bases: SKCDecisionMakerABC
Rank the alternatives by distance to a reference point.

The reference point is selected with the Min-Max Metric of Tchebycheft.

min{max [r; — zj;|}
J i

This reference point theory starts from the already normalized ratios as suggested in the MOORA method, namely
formula:

X.. — Xij

17 I e
W 2 X5
j=1

Preference is given to a reference point possessing as coordinates the dominating coordinates per attribute of
the candidate alternatives and which is designated as the Maximal Objective Reference Point. This approach is
called realistic and non-subjective as the coordinates, which are selected for the reference point, are realized in
one of the candidate alternatives.

66

Chapter 4. Contents

Scikit-Criteria Documentation, Release 0.8.7.dev0

References

[Brauers & Zavadskas, 2012]

skcriteria.agg.moora. fmf (matrix, objectives, weights)

Execute Full Multiplicative Form without any validation.

class skcriteria.agg.moora.FullMultiplicativeForm
Bases: SKCDecisionMakerABC

Non-linear, non-additive ranking method method.
Full Multiplicative Form does not use weights and does not require normalization.
To combine a minimization and maximization of different criteria in the same problem all the method uses the
formula:
i
Ul = |-
J n
|

Where j = the number of alternatives; ¢ = the number of objectives to be maximized; n — ¢ = the number of
objectives to be minimize; and U]’: the utility of alternative j with objectives to be maximized and objectives to
be minimized.

To avoid underflow, instead the multiplication of the values we add the logarithms of the values; so U’:, is finally
defined as:

Uj = Zlog(gcgi) - Z log(zx;)
g=1

k=i+1

Notes
The implementation works Instead the multiplication of the values we add the logarithms of the values to avoid
underflow.

Raises
ValueError: - If some objective is for minimization or some value in the matrix is <= 0.

References

[Brauers & Zavadskas, 2012]

skcriteria.agg.moora.multimoora(matrix, objectives, weights)

Execute weighted product model without any validation.

class skcriteria.agg.moora.MultiMOORA
Bases: SKCDecisionMakerABC

Combination of RatioMOORA, RefPointMOORA and FullMultiplicativeForm.

These three methods represent all possible methods with dimensionless measures in multi-objective optimization
and one can not argue that one method is better than or is of more importance than the others; so for determining
the final ranking the implementation maximizes how many times an alternative i dominates and alternative j.

Raises
ValueError: — If some objective is for minimization or some value in the matrix is <= 0.

4.3. skcriteria package 67

Scikit-Criteria Documentation, Release 0.8.7.dev0

References

[Brauers & Zavadskas, 2012]

skcriteria.agg.similarity module

Methods based on a similarity between alternatives.

skcriteria.agg.similarity.topsis(matrix, objectives, weights, metric='euclidean', **kwargs)

Execute TOPSIS without any validation.

class skcriteria.agg.similarity.TOPSIS(*, metric='euclidean")

Bases: SKCDecisionMakerABC
The Technique for Order of Preference by Similarity to Ideal Solution.

TOPSIS is based on the concept that the chosen alternative should have the shortest geometric distance from the
ideal solution and the longest euclidean distance from the worst solution.

An assumption of TOPSIS is that the criteria are monotonically increasing or decreasing, and also allow trade-
offs between criteria, where a poor result in one criterion can be negated by a good result in another criterion.

Parameters
metric (str or callable, optional) — The distance metric to use. If a string, the
distance function can be braycurtis, canberra, chebyshev, cityblock, correlation,
cosine, dice, euclidean, hamming, jaccard, jensenshannon, kulsinski, mahalanobis,
matching, minkowski, rogerstanimoto, russellrao, seuclidean, sokalmichener,
sokalsneath, sqeuclidean, wminkowski, yule.

Warning:

UserWarning:
If some objective is to minimize.

References

[Hwang & Yoon, 1981] [Wikipedia contributors, 2021a] [Tzeng & Huang, 2011]

property metric

Which distance metric will be used.

skcriteria.agg.simple module

Some simple and compensatory methods.

skcriteria.agg.simple.wsm(matrix, weights)

Execute weighted sum model without any validation.

class skcriteria.agg.simple.WeightedSumModel

Bases: SKCDecisionMakerABC
The weighted sum model.

WSM is the best known and simplest multi-criteria decision analysis for evaluating a number of alternatives in
terms of a number of decision criteria. It is very important to state here that it is applicable only when all the

68

Chapter 4. Contents

https://docs.python.org/3/library/stdtypes.html#str

Scikit-Criteria Documentation, Release 0.8.7.dev0

data are expressed in exactly the same unit. If this is not the case, then the final result is equivalent to “adding
apples and oranges”. To avoid this problem a previous normalization step is necessary.

In general, suppose that a given MCDA problem is defined on m alternatives and n decision criteria. Further-
more, let us assume that all the criteria are benefit criteria, that is, the higher the values are, the better it is. Next
suppose that w; denotes the relative weight of importance of the criterion C'; and a;; is the performance value
of alternative A; when it is evaluated in terms of criterion C;. Then, the total (i.e., when all the criteria are
considered simultaneously) importance of alternative A;, denoted as A}/VS M—score i¢ defined as follows:

n
AE/VSM—score _ 2 :w]‘aij; fori=1,23,..m
Jj=1

For the maximization case, the best alternative is the one that yields the maximum total performance value.

Raises
ValueError: — If some objective is for minimization.

References

[Fishburn, 1967], [Wikipedia contributors, 2021b], [Tzeng & Huang, 2011]

skcriteria.agg.simple.wpm(mnatrix, weights)

Execute weighted product model without any validation.

class skcriteria.agg.simple.WeightedProductModel
Bases: SKCDecisionMakerABC

The weighted product model.

WPM is a popular multi-criteria decision analysis method. It is similar to the weighted sum model. The main
difference is that instead of addition in the main mathematical operation now there is multiplication.

In general, suppose that a given MCDA problem is defined on m alternatives and n decision criteria. Further-
more, let us assume that all the criteria are benefit criteria, that is, the higher the values are, the better it is. Next
suppose that w; denotes the relative weight of importance of the criterion C; and a;; is the performance value
of alternative A; when it is evaluated in terms of criterion C;. Then, the total (i.e., when all the criteria are
considered simultaneously) importance of alternative A;, denoted as A}/VP M—score ¢ defined as follows:

o fori=1,2,3,....m

n

WPM—score __ w

A; = H Qi
j=1

To avoid underflow, instead the multiplication of the values we add the logarithms of the values; so AZVP M=score
is finally defined as:

n
AW PM=seore — N7 log(aij), fori=1,2,3,..,m
Jj=1

For the maximization case, the best alternative is the one that yields the maximum total performance value.

Raises
ValueError: — If some objective is for minimization or some value in the matrix is <= 0.

4.3. skcriteria package 69

Scikit-Criteria Documentation, Release 0.8.7.dev0

References

[Bridgman, 1922] [Miller & others, 1963]

skcriteria.agg.simus module

SIMUS (Sequential Interactive Model for Urban Systems) Method.

skcriteria.agg.simus.simus (matrix, objectives, b=None, rank_by=1, solver="pulp")

Execute SIMUS without any validation.

class skcriteria.agg.simus.SIMUS (¥, rank_by=I1, solver="pulp")

Bases: SKCDecisionMakerABC
SIMUS (Sequential Interactive Model for Urban Systems).

SIMUS developed by Nolberto Munier (2011) is a tool to aid decision-making problems with multiple objectives.
The method solves successive scenarios formulated as linear programs. For each scenario, the decision-maker
must choose the criterion to be considered objective while the remaining restrictions constitute the constrains
system that the projects are subject to. In each case, if there is a feasible solution that is optimum, it is recorded
in a matrix of efficient results. Then, from this matrix two rankings allow the decision maker to compare results
obtained by different procedures. The first ranking is obtained through a linear weighting of each column by a
factor - equivalent of establishing a weight - and that measures the participation of the corresponding project. In
the second ranking, the method uses dominance and subordinate relationships between projects, concepts from
the French school of MCDM.

Parameters

e rank_by (1 or 2 (default=1)) — Witch of the two methods are used to calculate the
ranking. The two methods are executed always.

* solver (str, (default="pulp"))- Which solver to use to solve the underlying linear
programs. The full list are available in pulp.listSolvers(True). “pulp” or None used the default
solver selected by “PuLP”.

Warning:

UserWarning:
If the method detect different weights by criteria.

Raises
» ValueError: - If the length of b does not match the number of criteria.
* See -

e PuLP Documentation <https://coin-or.github.io/pulp/>" —
property solver
Solver used by PuLP.

property rank_by
Which of the two ranking provided by SIMUS is used.

70

Chapter 4. Contents

https://docs.python.org/3/library/stdtypes.html#str

Scikit-Criteria Documentation, Release 0.8.7.dev0

evaluate(dm, *, b=None)

Validate the decision matrix and calculate a ranking.
Parameters

e dm (skcriteria.data.DecisionMatrix) — Decision matrix on which the ranking will
be calculated.

* b (numpy.ndarray) — Right-side-value of the LP problem,

SIMUS automatically assigns the vector of the right side (b) in the constraints of linear
programs.

If the criteria are to maximize, then the constraint is <=; and if the column minimizes the
constraint is >=. The b/right side value limits of the constraint are chosen automatically
based on the minimum or maximum value of the criteria/column if the constraint is <= or
>=respectively.

The user provides “b” in some criteria and lets SIMUS choose automatically others. For
example, if you want to limit the two constraints of the dm with 4 criteria by the value 100,
b must be [None, 100, 100, None] where None will be chosen automatically by SIMUS.

Returns
Ranking.

Return type
skcriteria.data.RankResult

4.3.3 skcriteria.preprocessing package

Multiple data transformation routines.

skcriteria.preprocessing._preprocessing_base module

Core functionalities to create transformers.

class skcriteria.preprocessing._preprocessing_base.SKCTransformerABC
Bases: SKCMethodABC

Abstract class for all transformer in scikit-criteria.

transform(dm)
Perform transformation on dm.

Parameters
dm (skcriteria.data.DecisionMatrix) — The decision matrix to transform.

Returns
Transformed decision matrix.

Return type
skcriteria.data.DecisionMatrix

class skcriteria.preprocessing._preprocessing_base.SKCMatrixAndWeightTransformerABC(target)
Bases: SKCTransformerABC

Transform weights and matrix together or independently.

The Transformer that implements this abstract class can be configured to transform weights, matrix or both so
only that part of the DecisionMatrix is altered.

4.3. skcriteria package 71

Scikit-Criteria Documentation, Release 0.8.7.dev0

This abstract class require to redefine _transform_weights and _transform_matrix, instead of
_transform_data.

property target

Determine which part of the DecisionMatrix will be transformed.

skcriteria.preprocessing.distance module

Warning: This module is deprecated.

Normalization through the distance to distance function.
This entire module is deprecated.

skcriteria.preprocessing.distance.cenit_distance (matrix, objectives)

Calculate a scores with respect to an ideal and anti-ideal alternative.

For every criterion f of this multicriteria problem we define a membership function z; mapping the values of f;
to the interval [0, 1].

The result score x;‘expressesthedegreetowhichthealternative : math : ‘a is close to the ideal value f7,
which is the best performance in criterion , and far from the anti-ideal value f;-, which is the worst performance
in criterion j. Both ideal and anti-ideal, are achieved by at least one of the alternatives under consideration.
o fila) = £
aj] —
fi = fi
Deprecated since version 0.8: Use skcriteria.preprocessing.scalers.
matrix_scale_by_cenit_distance instead
class skcriteria.preprocessing.distance.CenitDistance(*args, **kwargs)
Bases: CenitDistanceMatrixScaler

Relative scores with respect to an ideal and anti-ideal alternative.

For every criterion f of this multicriteria problem we define a membership function =; mapping the values of f;
to the interval [0, 1].

The result score x,;‘expressesthedegreetowhichthealternative : math : ‘a is close to the ideal value f7,
which is the best performance in criterion , and far from the anti-ideal value f;-, which is the worst performance
in criterion j. Both ideal and anti-ideal, are achieved by at least one of the alternatives under consideration.

- fila) = fj-
aj —
=t
Deprecated since version 0.8: Use skcriteria.preprocessing.scalers.CenitDistanceMatrixScaler

instead

72 Chapter 4. Contents

Scikit-Criteria Documentation, Release 0.8.7.dev0

References

[Diakoulaki et al., 1995]

skcriteria.preprocessing.filters module

Normalization through the distance to distance function.

class skcriteria.preprocessing.filters.SKCByCriteriaFilterABC(criteria_filters, *,
ignore_missing_criteria=False)

Bases: SKCTransformerABC

Abstract class capable of filtering alternatives based on criteria values.

This abstract class require to redefine _coerce_filters and _make_mask, instead of _transform_data.
Parameters

e criteria_filters (dict) — It is a dictionary in which the key is the name of a criterion,
and the value is the filter condition.

* ignore_missing_criteria (bool, default: False) - If True, it is ignored if a deci-
sion matrix does not have any particular criteria that should be filtered.

property criteria_filters
Conditions on which the alternatives will be evaluated.

It is a dictionary in which the key is the name of a criterion, and the value is the filter condition.

property ignore_missing_criteria
If the value is True the filter ignores the lack of a required criterion.

If the value is False, the lack of a criterion causes the filter to fail.

class skcriteria.preprocessing.filters.Filter(criteria_filters, *, ignore_missing_criteria=False)
Bases: SKCByCriteriaFilterABC

Function based filter.

This class accepts as a filter any arbitrary function that receives as a parameter a as a parameter a criterion and
returns a mask of the same size as the number of the number of alternatives in the decision matrix.

Parameters

» criteria_filters (dict) - Itis a dictionary in which the key is the name of a criterion,
and the value is the filter condition.

* ignore_missing_criteria (bool, default: False) - If True, it is ignored if a deci-
sion matrix does not have any particular criteria that should be filtered.

4.3. skcriteria package 73

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#bool

Scikit-Criteria Documentation, Release 0.8.7.dev0

Examples

>>> from skcriteria.preprocess import filters

>>> dm = skc.mkdm(

matrix=[
[7, 5, 35],
[5, 4, 26],
[5, 6, 28],
[1, 7, 30],
[5, 8, 30]
1,

objectives=[max, max, min],
alternatives=["PE", "JN", "AA", "MM", "FN"],
.. criteria=["ROE", "CAP", "RI"],

-)
>>> tfm = filters.Filter({
"ROE": lambda e: e > 1,
. "RI": lambda e: e >= 28,
D)
>>> tfm.transform(dm)

ROE[2.0] CAP[4.0] RI[1.0]

R 7 5 35
AA 5 6 28
FN 5 8 30

[3 Alternatives x 3 Criteria]

class skcriteria.preprocessing.filters.SKCArithmeticFilterABC(criteria_filters, *,
ignore_missing_criteria=False)

Bases: SKCByCriteriaFilterABC
Provide a common behavior to make filters based on the same comparator.
This abstract class require to redefine _filter method, and this will apply to each criteria separately.

(LY T LR TR L TR L)
s T -

This class is designed to implement in general arithmetic comparisons of “==
advantage of the functions provided by numpy (e.g. np.greater_equal()).

Parameters

» criteria_filters (dict) - Itis a dictionary in which the key is the name of a criterion,
and the value is the filter condition.

* ignore_missing_criteria (bool, default: False) - If True, it is ignored if a deci-
sion matrix does not have any particular criteria that should be filtered.

>7) 4=, < “<=""taking

74 Chapter 4. Contents

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#bool

Scikit-Criteria Documentation, Release 0.8.7.dev0

Notes

The filter implemented with this class are slightly faster than function-based filters.

class skcriteria.preprocessing.filters.FilterGT (criteria_filters, *, ignore_missing_criteria=False)
Bases: SKCArithmeticFilterABC

Keeps the alternatives for which the criteria value are greater than a value.
Parameters

e criteria_filters (dict) — It is a dictionary in which the key is the name of a criterion,
and the value is the filter condition.

* ignore_missing_criteria (bool, default: False) - If True, it is ignored if a deci-
sion matrix does not have any particular criteria that should be filtered.

Notes

The filter implemented with this class are slightly faster than function-based filters.

Examples

>>> from skcriteria.preprocess import filters

>>> dm = skc.mkdm(

matrix=[
[7, 5, 351,
[5, 4, 26],
[5, 6, 28],
[1, 7, 30],
[5, 8, 30]
1,

objectives=[max, max, min],
alternatives=["PE", "JN", "AA", "MM", "FN"],
.. criteria=["ROE", "CAP", "RI"],

.)
>>> tfm = filters.FilterGT({"ROE": 1, "RI": 27})

>>> tfm.transform(dm)
ROE[2.0] CAP[4.0] RI[1.0]

PE 7 5 35
AA 5 6 28
FN 5 8 30

[3 Alternatives x 3 Criterial]

class skcriteria.preprocessing.filters.FilterGE (criteria_filters, *, ignore_missing_criteria=False)
Bases: SKCArithmeticFilterABC

Keeps the alternatives for which the criteria value are greater or equal than a value.
Parameters

o criteria_filters (dict)— It is a dictionary in which the key is the name of a criterion,
and the value is the filter condition.

4.3. skcriteria package 75

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#dict

Scikit-Criteria Documentation, Release 0.8.7.dev0

» ignore_missing_criteria (bool, default: False) - If True, it is ignored if a deci-
sion matrix does not have any particular criteria that should be filtered.

Notes

The filter implemented with this class are slightly faster than function-based filters.

Examples

>>> from skcriteria.preprocess import filters

>>> dm = skc.mkdm(

matrix=[
[7, 5, 351,
[5, 4, 26],
[5, 6, 28],
[1, 7, 30],
[5, 8, 30]
1,

objectives=[max, max, min],
alternatives=["PE", "JN", "AA", "MM", "FN"],
. criteria=["ROE", "CAP", "RI"],

-)
>>> tfm = filters.FilterGE({"ROE": 1, "RI": 273})

>>> tfm.transform(dm)
ROE[2.0] CAP[4.0] RI[1.0]

PE 7 5 35
AA 5 6 28
MM 1 7 30
FN 5 8 30

[4 Alternatives x 3 Criterial

class skcriteria.preprocessing.filters.FilterLT (criteria_filters, *, ignore_missing_criteria=False)
Bases: SKCArithmeticFilterABC

Keeps the alternatives for which the criteria value are less than a value.
Parameters

e criteria_filters (dict) - Itis a dictionary in which the key is the name of a criterion,
and the value is the filter condition.

e ignore_missing_criteria (bool, default: False)- If True, it is ignored if a deci-
sion matrix does not have any particular criteria that should be filtered.

76 Chapter 4. Contents

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#bool

Scikit-Criteria Documentation, Release 0.8.7.dev0

Notes

The filter implemented with this class are slightly faster than function-based filters.

Examples

>>> from skcriteria.preprocess import filters

>>> dm = skc.mkdm(

matrix=[
[7, 5, 351,
[5, 4, 26],
[5, 6, 28],
[1, 7, 30],
[5, 8, 30]
1,

objectives=[max, max, min],
alternatives=["PE", "JIN", "AA", "MM", "FN"],
.. criteria=["ROE", "CAP", "RI"],

.)

>>> tfm = filters.FilterLT({"RI": 28})
>>> tfm.transform(dm)
ROE[2.0] CAP[4.0] RI[1.0]
JN 5 4 26
[1 Alternatives x 3 Criterial]

class skcriteria.preprocessing.filters.FilterLE (criteria_filters, *, ignore_missing_criteria=False)
Bases: SKCArithmeticFilterABC

Keeps the alternatives for which the criteria value are less or equal than a value.
Parameters

» criteria_filters (dict) — It is a dictionary in which the key is the name of a criterion,
and the value is the filter condition.

* ignore_missing_criteria (bool, default: False) - If True, it is ignored if a deci-
sion matrix does not have any particular criteria that should be filtered.

4.3. skcriteria package 77

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#bool

Scikit-Criteria Documentation, Release 0.8.7.dev0

Notes

The filter implemented with this class are slightly faster than function-based filters.

Examples

>>> from skcriteria.preprocess import filters

>>> dm = skc.mkdm(

matrix=[
[7, 5, 351,
[5, 4, 26],
[5, 6, 28],
[1, 7, 30],
[5, 8, 30]
1,

objectives=[max, max, min],
alternatives=["PE", "JIN", "AA", "MM", "FN"],
A criteria=["ROE", "CAP", "RI"],

-)
>>> tfm = filters.FilterLE({"RI": 28})
>>> tfm.transform(dm)

ROE[2.0] CAP[4.0] RI[1.0]

JN 5 4 26

AA 5 6 28
[2 Alternatives x 3 Criterial]

class skcriteria.preprocessing.filters.FilterEQ(criteria_filters, *, ignore_missing_criteria=False)
Bases: SKCArithmeticFilterABC

Keeps the alternatives for which the criteria value are equal than a value.
Parameters

» criteria_filters (dict) — Itis a dictionary in which the key is the name of a criterion,
and the value is the filter condition.

* ignore_missing_criteria (bool, default: False) - If True, it is ignored if a deci-
sion matrix does not have any particular criteria that should be filtered.

Notes

The filter implemented with this class are slightly faster than function-based filters.

78 Chapter 4. Contents

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#bool

Scikit-Criteria Documentation, Release 0.8.7.dev0

Examples

>>> from skcriteria.preprocess import filters

>>> dm = skc.mkdm(

matrix=[
[7, 5, 351,
[5, 4, 26],
[5, 6, 28],
[1, 7, 301,
[5, 8, 30]
1,

objectives=[max, max, min],
alternatives=["PE", "JIN", "AA", "MM", "FN"],
o criteria=["ROE", "CAP", "RI"],

-)
>>> tfm = filters.FilterEQ({"CAP": 7, "RI": 30})
>>> tfm.transform(dm)

ROE[2.0] CAP[4.0] RI[1.0]

MM 1 7 30
[1 Alternatives x 3 Criterial]

class skcriteria.preprocessing.filters.FilterNE (criteria_filters, *, ignore_missing_criteria=False)
Bases: SKCArithmeticFilterABC

Keeps the alternatives for which the criteria value are not equal than a value.

Parameters

e criteria_filters (dict) — It is a dictionary in which the key is the name of a criterion,
and the value is the filter condition.

* ignore_missing_criteria (bool, default: False) - If True, it is ignored if a deci-
sion matrix does not have any particular criteria that should be filtered.

Notes

The filter implemented with this class are slightly faster than function-based filters.

Examples

>>> from skcriteria.preprocess import filters

>>> dm = skc.mkdm(

matrix=[
[7, 5, 351,
[5, 4, 26],
[5, 6, 28],
[1, 7, 301,
[5, 8, 30]
1,

objectives=[max, max, min],
(continues on next page)

4.3. skcriteria package 79

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#bool

Scikit-Criteria Documentation, Release 0.8.7.dev0

(continued from previous page)
alternatives=["PE", "IN", "AA", "MM", "FN"],
. criteria=["ROE", "CAP", "RI"],
=)

>>> tfm = filters.FilterNE({"CAP": 7, "RI": 30})
>>> tfm.transform(dm)
ROE[2.0] CAP[4.0] RI[1.0]

RE! 7 5 35
JN 5 4 26
AA 5 6 28

[3 Alternatives x 3 Criterial

class skcriteria.preprocessing.filters.SKCSetFilterABC(criteria_filters, *,

ignore_missing_criteria=False)
Bases: SKCByCriteriaFilterABC
Provide a common behavior to make filters based on set operations.
This abstract class require to redefine _set_filter method, and this will apply to each criteria separately.
This class is designed to implement in general set comparison like “inclusion” and “exclusion”.
Parameters

e criteria_filters (dict) — It is a dictionary in which the key is the name of a criterion,
and the value is the filter condition.

* ignore_missing_criteria (bool, default: False) - If True, it is ignored if a deci-
sion matrix does not have any particular criteria that should be filtered.

class skcriteria.preprocessing.filters.FilterIn(criteria_filters, *, ignore_missing_criteria=False)

Bases: SKCSetFilterABC
Keeps the alternatives for which the criteria value are included in a set of values.
Parameters

e criteria_filters (dict) - Itis a dictionary in which the key is the name of a criterion,
and the value is the filter condition.

e ignore_missing_criteria (bool, default: False) - If True, it is ignored if a deci-
sion matrix does not have any particular criteria that should be filtered.

Examples

>>> from skcriteria.preprocess import filters

>>> dm = skc.mkdm(

matrix=[
[7, 5, 351,
[5, 4, 26],
[5, 6, 28],
[1, 7, 301,
[5, 8, 30]
1,

objectives=[max, max, min],

(continues on next page)

80

Chapter 4. Contents

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#bool

Scikit-Criteria Documentation, Release 0.8.7.dev0

(continued from previous page)

alternatives=["PE", "JIN", "AA", "MM", "FN"],
. criteria=["ROE", "CAP", "RI"],
.)

>>> tfm = filters.FilterIn({"ROE": [7, 1], "RI": [30, 351}
>>> tfm.transform(dm)
ROE[2.0] CAP[4.0] RI[1.0]
PE 7 5 35
MM 1 7 30
[2 Alternatives x 3 Criterial]

class skcriteria.preprocessing.filters.FilterNotIn(criteria_filters, *, ignore_missing_criteria=False)
Bases: SKCSetFilterABC

Keeps the alternatives for which the criteria value are not included in a set of values.
Parameters

e criteria_filters (dict) - It is a dictionary in which the key is the name of a criterion,
and the value is the filter condition.

» ignore_missing_criteria (bool, default: False) - If True, it is ignored if a deci-
sion matrix does not have any particular criteria that should be filtered.

Examples

>>> from skcriteria.preprocess import filters

>>> dm = skc.mkdm(

matrix=[
[7, 5, 351,
[5, 4, 26],
[5, 6, 28],
[1, 7, 301,
[5, 8, 30]
1,

objectives=[max, max, min],
alternatives=["PE", "JIN", "AA", "MM", "FN"],
o criteria=["ROE", "CAP", "RI"],

.)
>>> tfm = filters.FilterNotIn({"ROE": [7, 1], "RI": [30, 35]1})
>>> tfm.transform(dm)

ROE[2.0] CAP[4.0] RI[1.0]

JN 5 4 26

AA 5 6 28
[2 Alternatives x 3 Criterial]

class skcriteria.preprocessing.filters.FilterNonDominated(*, strict=False)
Bases: SKCTransformerABC

Keeps the non dominated or non strictly-dominated alternatives.

4.3. skcriteria package 81

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#bool

Scikit-Criteria Documentation, Release 0.8.7.dev0

In order to evaluate the dominance of an alternative a0 over an alternative al, the algorithm evaluates that a0 is
better in at least one criterion and that a/ is not better in any criterion than a0. In the case that strict = True

it also evaluates that there are no equal criteria.

Parameters

strict (bool, default False) — If True, strictly dominated alternatives are removed, otherwise

all dominated alternatives are removed.

Examples

>>> from skcriteria.preprocess import filters

>>> dm = skc.mkdm(

matrix=[
[7, 5, 351,
[5, 4, 26],
[5, 6, 28],
[1, 7, 30],
[5, 8, 30]
1,

objectives=[max, max, min],
alternatives=["PE", "JIN", "AA", "MM", "FN"],
oc criteria=["ROE", "CAP", "RI"],

-)
>>> tfm = filters.FilterNonDominated(strict=False)

>>> tfm.transform(dm)
ROE[1.0] CAP[1.0] RI[1.0]

PE 7 5 35
IN 5 4 26
AA 5 6 28
FN 5 8 30

[4 Alternatives x 3 Criterial]

property strict
If the filter must remove the dominated or strictly-dominated alternatives.

transform(dm)

Perform transformation on dm.
Parameters
e dm (skcriteria.data.DecisionMatrix) —
e transform. (The decision matrix to)-—

Returns
Transformed decision matrix.

Return type
skcriteria.data.DecisionMatrix

82

Chapter 4

. Contents

Scikit-Criteria Documentation, Release 0.8.7.dev0

skcriteria.preprocessing.impute module

Module that provides multiple strategies for missing value imputation.
The classes implemented here are a thin layer on top of the sklearn.impute module classes.

class skcriteria.preprocessing.impute.SKCImputerABC
Bases: SKCTransformerABC

Abstract class capable of impute missing values of the matrix.

This abstract class require to redefine _impute, instead of _transform_data.

class skcriteria.preprocessing.impute.SimpleImputer (*, missing_values=nan, strategy='mean’,
fill_value=None, keep_empty_criteria=False)

Bases: SKCImputerABC
Imputation transformer for completing missing values.
Internally this class uses the sklearn.impute.SimpleImputer class.

Parameters

e missing_values (int, float, str, np.nan, None or pandas.NA,
default=np.nan) — The placeholder for the missing values. All occurrences of

missing_values will be imputed.

* strategy (str, default=mean')— The imputation strategy.

— If “mean”, then replace missing values using the mean along each column. Can only be
used with numeric data.

— If “median”, then replace missing values using the median along each column. Can only
be used with numeric data.

— If “most_frequent”, then replace missing using the most frequent value along each column.
Can be used with strings or numeric data. If there is more than one such value, only the
smallest is returned.

— If “constant”, then replace missing values with fill_value. Can be used with strings or
numeric data.

fill_value (str or numerical value, default=None) — When strategy == “con-
stant”, fill_value is used to replace all occurrences of missing_values. If left to the default,
fill_value will be 0.

keep_empty_criteria (bool, default=False) — If True, criteria that consist exclu-
sively of missing values when fit is called are returned in results when transform is called.
The imputed value is always 0 except when strategy="constant” in which case fill_value
will be used instead.

New in version 0.8.5.

property missing_values

The placeholder for the missing values.
property strategy

The imputation strategy.
property fill_value

Used to replace all occurrences of missing_values, when strategy == “constant”.

4.3. skcriteria package

83

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool

Scikit-Criteria Documentation, Release 0.8.7.dev0

property keep_empty_criteria

If True, criteria that consist exclusively of missing values when fit is called are returned in results when
transform is called.

class skcriteria.preprocessing.impute.IterativeImputer (estimator=None, *, missing_values=nan,
sample_posterior=False, max_iter=10,
tol=0.001, n_nearest_criteria=None,
initial_strategy="mean’,
imputation_order='ascending’,
skip_complete=False, min_value=-inf,
max_value=inf, verbose=0,
random_state=None,
keep_empty_criteria=False,
fill_value=None)

Bases: SKCImputerABC
Multivariate imputer that estimates each criteria from all the others.

A strategy for imputing missing values by modeling each criteria with missing values as a function of other
criteria in a round-robin fashion.

Internally this class uses the sklearn.impute.IterativeImputer class.

This estimator is still experimental for now: the predictions and the API might change without any deprecation
cycle. To use it, you need to explicitly import enable_iterative_imputer:

>>> # explicitly require this experimental feature

>>> from sklearn.experimental import enable_iterative_imputer # noga
>>> # now you can import normally from sklearn.impute

>>> from skcriteria.preprocess.impute import IterativeImputer

Parameters

e estimator (estimator object, default=BayesianRidge ())— The estimator to use
at each step of the round-robin imputation. If sample_posterior=True, the estimator must
support return_std in its predict method.

* missing_values (int or np.nan, default=np.nan)- The placeholder for the miss-
ing values. All occurrences of missing_values will be imputed.

» sample_posterior (bool, default=False) - Whether to sample from the (Gaussian)
predictive posterior of the fitted estimator for each imputation. Estimator must support re-
turn_std in its predict method if set to True. Set to True if using Iterativelmputer for multiple
imputations.

* max_iter (int, default=10)—- Maximum number of imputation rounds to perform be-
fore returning the imputations computed during the final round. A round is a single impu-
tation of each criteria with missing values. The stopping criterion is met once max(abs(X_t
- X_{t-1}))/max(abs(X[known_vals])) < tol, where X_t is X at iteration ¢. Note that early
stopping is only applied if sample_posterior=False.

* tol (float, default=1e-3)- Tolerance of the stopping condition.

e n_nearest_criteria (int, default=None)— Number of other criteria to use to esti-
mate the missing values of each criteria column. Nearness between criteria is measured
using the absolute correlation coefficient between each criteria pair (after initial imputation).
To ensure coverage of criteria throughout the imputation process, the neighbor criteria are
not necessarily nearest, but are drawn with probability proportional to correlation for each

84 Chapter 4. Contents

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int

Scikit-Criteria Documentation, Release 0.8.7.dev0

imputed target criteria. Can provide significant speed-up when the number of criteria is huge.
If None, all criteria will be used.

e initial_strategy ({mean', 'median', ‘most_frequent', 'constant'},
default="mean') — Which strategy to use to initialize the missing values. Same as
the strategy parameter in SimpleImputer.

e imputation_order ({'ascending’', 'descending', 'roman', 'arabic', 'random'},
default='ascending') — The order in which the criteria will be imputed. Possible values:

— ’ascending’: From criteria with fewest missing values to most.

‘descending’: From criteria with most missing values to fewest.

roman’: Left to right.

‘arabic’: Right to left.
— ’random’: A random order for each round.

e min_value (float or array-like of shape (n_criteria,), default=-np.
inf) — Minimum possible imputed value. Broadcast to shape (n_criteria,) if scalar. If
array-like, expects shape (n_criteria,), one min value for each criteria. The default is -np.inf.

e max_value (float or array-like of shape (n_criteria,), default=np.inf)
— Maximum possible imputed value. Broadcast to shape (n_criteria,) if scalar. If array-like,
expects shape (n_criteria,), one max value for each criteria. The default is np.inf.

verbose (int, default=0)- Verbosity flag, controls the debug messages that are issued
as functions are evaluated. The higher, the more verbose. Can be 0, 1, or 2.

e random_state (int, RandomState instance or None, default=None)- The seed
of the pseudo random number generator to use. Randomizes selection of estimator criteria
if n_nearest_criteria is not None, the imputation_order if random, and the sampling from
posterior if sample_posterior=True. Use an integer for determinism.

keep_empty_criteria (bool, default=False) — If True, criteria that consist exclu-
sively of missing values when fir is called are returned in results when transform is called.
The imputed value is always 0 except when strategy="constant” in which case fill_value
will be used instead.

New in version 0.8.5.

e £fill_value (str or numerical value, default=None) - When strat-
egy="constant”, fill_value is used to replace all occurrences of missing_values. For
string or object data types, fill_value must be a string. If None, fill_value will be 0 when
imputing numerical data and “missing_value” for strings or object data types.

New in version 0.8.5.

property estimator
Used at each step of the round-robin imputation.
property missing_values
The placeholder for the missing values.
property sample_posterior
Whether to sample from the (Gaussian) predictive posterior of the fitted estimator for each imputation.
property max_iter

Maximum number of imputation rounds.

4.3. skcriteria package 85

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str

Scikit-Criteria Documentation, Release 0.8.7.dev0

property tol

Tolerance of the stopping condition.

property n_nearest_criteria

Number of other criteria to use to estimate the missing values of each criteria column.

property initial_strategy

Which strategy to use to initialize the missing values.

property imputation_order

The order in which the criteria will be imputed.
property min_value
Minimum possible imputed value.

property max_value

Maximum possible imputed value.

property verbose

Verbosity flag, controls the debug messages that are issued as functions are evaluated.

property random_state

The seed of the pseudo random number generator to use.

property keep_empty_criteria

If True, criteria that consist exclusively of missing values when fit is called are returned in results when
transform is called.

property fill_value

Used to replace all occurrences of missing_values When strategy="constant”.

class skcriteria.preprocessing.impute.KNNImputer (*, missing_values=nan, n_neighbors=>5,
weights="uniform', metric="nan_euclidean’,
keep_empty_criteria=False)

Bases: SKCImputerABC
Imputation for completing missing values using k-Nearest Neighbors.
Internally this class uses the sklearn.impute.KNNImputer class.

Each sample’s missing values are imputed using the mean value from n_neighbors nearest neighbors found in
the training set. Two samples are close if the criteria that neither is missing are close.

Parameters

e missing_values (int, float, str, np.nan or None, default=np.nan) — The
placeholder for the missing values. All occurrences of missing_values will be imputed.

* n_neighbors (int, default=>5)- Number of neighboring samples to use for imputation.

* weights ({'uniform', 'distance'} or callable, default='uniform') — Weight
function used in prediction. Possible values:

— ’uniform’: uniform weights. All points in each neighborhood are weighted equally.

— ’distance’: weight points by the inverse of their distance. in this case, closer neighbors of
a query point will have a greater influence than neighbors which are further away.

— callable: a user-defined function which accepts an array of distances, and returns an array
of the same shape containing the weights.

86 Chapter 4. Contents

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int

Scikit-Criteria Documentation, Release 0.8.7.dev0

e metric ({'nan_euclidean'} or callable, default='nan_euclidean') — Distance
metric for searching neighbors. Possible values:

— ’nan_euclidean’

— callable : a user-defined function which conforms to the definition of
_pairwise_callable(X, Y, metric, **kwds). The function accepts two ar-
rays, X and Y, and a missing_values keyword in kwds and returns a scalar distance
value.

e keep_empty_criteria (bool, default=False) — If True, criteria that consist exclu-
sively of missing values when fir is called are returned in results when transform is called.
The imputed value is always 0 except when strategy="constant” in which case fill_value
will be used instead.

New in version 0.8.5.

property missing_values

The placeholder for the missing values.

property n_neighbors

Number of neighboring samples to use for imputation.
property weights

Weight function used in prediction.

property metric

Distance metric for searching neighbors.

property keep_empty_criteria

If True, criteria that consist exclusively of missing values when fit is called are returned in results when
transform is called.

skcriteria.preprocessing.increment module

Functionalities to add an value when an array has a zero.

In addition to the main functionality, an MCDA agnostic function is offered to add value to zero on an array along an
arbitrary axis.

skcriteria.preprocessing.increment.add_value_to_zero(arr, value, axis=None)

Add value if the axis has a value 0.
yij = Xij + value

Parameters
e arr (numpy.ndarray like.) — A array with values
e value (number) — Number to add if the axis has a 0.
* axis (int optional) — Axis along which to operate. By default, flattened input is used.

Returns
array with all values >= value.

Return type
numpy .ndarray

4.3. skcriteria package 87

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int

Scikit-Criteria Documentation, Release 0.8.7.dev0

Examples

>>> from skcriteria import add_to_zero

no zero
>>> mtx = [[1, 2], [3, 4]1]
>>> add_to_zero(mtx, value=0.5)
array([[1, 2],
[3, 411D

with zero
>>> mtx = [[0, 1], [2,3]1]
>>> add_to_zero(mtx, value=0.5)
array([[0.5, 1.5],
[2.5, 3.511)

class skcriteria.preprocessing.increment.AddValueToZero (target, value=1.0)
Bases: SKCMatrixAndWeightTransformerABC

Add value if the matrix/weight whe has a value 0.

Yij = Xij —|— Ualue

property value
Value to add to the matrix/weight when a zero is found.

skcriteria.preprocessing.invert_objectives module

Implementation of functionalities for convert minimization criteria into maximization ones.

class skcriteria.preprocessing.invert_objectives.SKCObjectivesInverterABC
Bases: SKCTransformerABC

Abstract class capable of invert objectives.
This abstract class require to redefine _invert, instead of _transform_data.

class skcriteria.preprocessing.invert_objectives.NegateMinimize
Bases: SKCObjectivesInverterABC

Transform all minimization criteria into maximization ones.
The transformations are made by calculating the inverse value of the minimization criteria. min C' = max —C.

class skcriteria.preprocessing.invert_objectives.InvertMinimize
Bases: SKCObjectivesInverterABC

Transform all minimization criteria into maximization ones.

The transformations are made by calculating the inverse value of the minimization criteria. min C' = max %

88 Chapter 4. Contents

Scikit-Criteria Documentation, Release 0.8.7.dev0

Notes

All the dtypes of the decision matrix are preserved except the inverted ones thar are converted to numpy . f1oat64.

class skcriteria.preprocessing.invert_objectives.MinimizeToMaximize (*args, **kwargs)

Bases: InvertMinimize
Transform all minimization criteria into maximization ones.
The transformations are made by calculating the inverse value of the minimization criteria. min C' = max %

Deprecated since version 0.7: Use skcriteria.preprocessing.invert_objectives.InvertMinimize
instead

Notes

All the dtypes of the decision matrix are preserved except the inverted ones thar are converted to numpy . float64.

skcriteria.preprocessing.push_negatives module

Functionalities for remove negatives from criteria.

In addition to the main functionality, an MCDA agnostic function is offered to push negatives values on an array along
an arbitrary axis.

skcriteria.preprocessing.push_negatives.push_negatives(arr, axis)
Increment the array until all the valuer are sean >= 0.

If an array has negative values this function increment the values proportionally to made all the array positive
along an axis.

YZ-- _ Xij —|—mmX” iinj <0
! Xij otherwise
Parameters

e arr (numpy.ndarray like.) — A array with values

* axis (int optional) — Axis along which to operate. By default, flattened input is used.

Returns
array with all values >= 0.

Return type
numpy .ndarray

Examples

>>> from skcriteria.preprocess import push_negatives
>>> mtx = [[1, 2], [3, 4]]
>>> mtx_1t0 = [[-1, 2], [3, 4]] # has a negative value

>>> push_negatives(mtx) # array without negatives don't be affected
array([[1, 21,
[3, 41D

(continues on next page)

4.3. skcriteria package 89

https://docs.python.org/3/library/functions.html#int

Scikit-Criteria Documentation, Release 0.8.7.dev0

(continued from previous page)

all the array is incremented by 1 to eliminate the negative
>>> push_negatives(mtx_1t0)
array([[0, 3],

[4, 51D

by column only the first one (with the negative value) is affected
>>> push_negatives(mtx_1t0®, axis=0)
array([[0®, 2],

[4, 411D
by row only the first row (with the negative value) is affected
>>> push_negatives(mtx_1t0, axis=1)
array([[0®, 3],

[3, 41D

class skcriteria.preprocessing.push_negatives.PushNegatives(target)
Bases: SKCMatrixAndWeightTransformerABC

Increment the matrix/weights until all the valuer are sean >= 0.

If the matrix/weights has negative values this function increment the values proportionally to made all the ma-
trix/weights positive along an axis.

Yij _ {Xij +mz’nxi]. if X;; <0

Xij otherwise

skcriteria.preprocessing.scalers module

Functionalities for scale values based on different strategies.

In addition to the Transformers, a collection of an MCDA agnostic functions are offered to scale an array along an
arbitrary axis.

class skcriteria.preprocessing.scalers.StandarScaler (target, *, with_mean=True, with_std=True)
Bases: SKCMatrixAndWeightTransformerABC

Standardize the dm by removing the mean and scaling to unit variance.
The standard score of a sample x is calculated as:
z=(x-u)/s
where u is the mean of the values, and s is the standard deviation of the training samples or one if with_std=False.
This is a thin wrapper around sklearn.preprocessing.StandarScaler.
Parameters
* with_mean (bool, default=True) - If True, center the data before scaling.

» with_std (bool, default=True) — If True, scale the data to unit variance (or equiva-
lently, unit standard deviation).

property with_mean

True if the features will be center before scaling.
property with_std

True if the features will be scaled to the unit variance.

90 Chapter 4. Contents

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

Scikit-Criteria Documentation, Release 0.8.7.dev0

class skcriteria.preprocessing.scalers.MinMaxScaler (target, *, clip=False, criteria_range=(0, 1))
Bases: SKCMatrixAndWeightTransformerABC

Scaler based on the range.

The matrix transformation is given by:

X_std = (X - X.min(axis=0)) / (X.max(axis=0) - X.min(axis=0))
X_scaled = X_std * (max - min) + min

And the weight transformation:

X_std = (X - X.min(axis=None)) / (X.max(axis=None) - X.min(axis=None))
X_scaled = X_std * (max - min) + min

If the scaler is configured to work with ‘matrix’ each value of each criteria is divided by the range of that criteria.
In other hand if is configure to work with ‘weights’, each value of weight is divided by the range the weights.
This is a thin wrapper around sklearn.preprocessing.MinMaxScaler.

Parameters

e criteria_range (tuple (min, max), default=(0®, 1)) — Desired range of trans-
formed data.

» clip (bool, default=False)— Setto True to clip transformed values of held-out data to
provided criteria_range.

property clip
True if the transformed values will be clipped to held-out the value provided criteria_range.

property criteria_range
Range of transformed data.

class skcriteria.preprocessing.scalers.MaxAbsScaler (target)
Bases: SKCMatrixAndWeightTransformerABC

Scaler based on the maximum values.

If the scaler is configured to work with ‘matrix’ each value of each criteria is divided by the maximum value of
that criteria. In other hand if is configure to work with ‘weights’, each value of weight is divided by the maximum
value the weights.

This estimator scales and translates each criteria individually such that the maximal absolute value of each criteria
in the training set will be 1.0. It does not shift/center the data, and thus does not destroy any sparsity.

This is a thin wrapper around sklearn.preprocessing.MaxAbsScaler.

class skcriteria.preprocessing.scalers.MaxScaler (*args, **kwargs)
Bases: MaxAbsScaler

Scaler based on the maximum values.
From skcriteria >= 0.8 this is a thin wrapper around sklearn.preprocessing.MaxAbsScaler.
Deprecated since version 0.8: Use skcriteria.preprocessing.scalers.MaxAbsScaler instead

skcriteria.preprocessing.scalers.scale_by_vector (arr, axis=None)

Divide the array by norm of values defined vector along an axis.

4.3. skcriteria package 91

https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#bool

Scikit-Criteria Documentation, Release 0.8.7.dev0

Calculates the set of ratios as the square roots of the sum of squared responses of a given axis as denominators.
If axis is None sum all the array.

_ X,
Xij - m -
JEx
j=1

e arr (numpy.ndarray like.) — A array with values

Parameters

* axis (int optional) — Axis along which to operate. By default, flattened input is used.

Returns
array of ratios

Return type
numpy .ndarray

Examples

>>> from skcriteria.preprocess import scale_by_vector
>>> mtx = [[1, 2], [3, 4]]

ratios with the vector value of the array
>>> scale_by_vector(mtx)
array([[0.18257418, 0.36514837],

[0.54772252, 0.73029673]])

ratios by column

>>> scale_by_vector(mtx, axis=0)

array([[0.31622776, 0.44721359],
[0.94868326, 0.89442718]])

ratios by row

>>> scale_by_vector(mtx, axis=1)

array([[0.44721359, 0.89442718],
[0.60000002, 0.30000001]1])

class skcriteria.preprocessing.scalers.VectorScaler (target)
Bases: SKCMatrixAndWeightTransformerABC

Scaler based on the norm of the vector..

_ j
Xij =

JEx
j=1

If the scaler is configured to work with ‘matrix’ each value of each criteria is divided by the norm of the vector

defined by the values of that criteria. In other hand if is configure to work with ‘weights’, each value of weight

is divided by the vector defined by the values of the weights.
skcriteria.preprocessing.scalers.scale_by_sum(arr, axis=None)

Divide of every value on the array by sum of values along an axis.

Xij ==
> Xij
j=1

92 Chapter 4. Contents

https://docs.python.org/3/library/functions.html#int

Scikit-Criteria Documentation, Release 0.8.7.dev0

Parameters
e arr (numpy.ndarray like.) — A array with values
* axis (int optional) — Axis along which to operate. By default, flattened input is used.

Returns
array of ratios

Return type
numpy .ndarray

Examples

>>> from skcriteria.preprocess import scale_by_sum
>>> mtx = [[1, 21, [3, 411

>>> scale_by_sum(mtx) # ratios with the sum of the array
array([[0.1 , 0.2 1,
[0.30000001, 0.40000001]])

ratios with the sum of the array by column
>>> scale_by_sum(mtx, axis=0)
array([[0.25 , 0.33333334],

[0.75 , 0.66666669]])

ratios with the sum of the array by row
>>> scale_by_sum(mtx, axis=1)
array([[0.33333334, 0.66666669],

[©.42857143, ©0.5714286 1])

class skcriteria.preprocessing.scalers.SumScaler (target)
Bases: SKCMatrixAndWeightTransformerABC

Scalerbased on the total sum of values.
> Xij
j=1

yij =

If the scaler is configured to work with ‘matrix” each value of each criteria is divided by the total sum of all the
values of that criteria. In other hand if is configure to work with ‘weights’, each value of weight is divided by the
total sum of all the weights.

skcriteria.preprocessing.scalers.matrix_scale_by_cenit_distance (matrix, objectives)
Calculate a scores with respect to an ideal and anti-ideal alternative.

For every criterion f of this multicriteria problem we define a membership function =; mapping the values of f;
to the interval [0, 1].

The result score x,;‘expressesthedegreetowhichthealternative : math : ‘a is close to the ideal value f7,
which is the best performance in criterion , and far from the anti-ideal value f;-, which is the worst performance
in criterion j. Both ideal and anti-ideal, are achieved by at least one of the alternatives under consideration.

fila) — fj-

x =
@ f;.‘ — [

4.3. skcriteria package 93

https://docs.python.org/3/library/functions.html#int

Scikit-Criteria Documentation, Release 0.8.7.dev0

class skcriteria.preprocessing.scalers.CenitDistanceMatrixScaler
Bases: SKCTransformerABC

Relative scores with respect to an ideal and anti-ideal alternative.

For every criterion f of this multicriteria problem we define a membership function z; mapping the values of f;
to the interval [0, 1].

The result score z; expressesthedegreetowhichthealternative : math : ‘a is close to the ideal value f7,
which is the best performance in criterion , and far from the anti-ideal value f;-, which is the worst performance
in criterion j. Both ideal and anti-ideal, are achieved by at least one of the alternatives under consideration.

_ fila) = fj-

Laj =

I = [

References

[Diakoulaki et al., 1995]

skcriteria.preprocessing.weighters module

Functionalities for weight the criteria.

In addition to the main functionality, an MCDA agnostic function is offered to calculate weights to a matrix along an
arbitrary axis.

class skcriteria.preprocessing.weighters.SKCWeighterABC
Bases: SKCTransformerABC

Abstract class capable of determine the weights of the matrix.
This abstract class require to redefine _weight_matrix, instead of _transform_data.

skcriteria.preprocessing.weighters.equal_weights (matrix, base_value=1)

Use the same weights for all criteria.

The result values are normalized by the number of columns.

base_value
w; = ————
m

Where m is the number os columns/criteria in matrix.
Parameters
* matrix (numpy.ndarray like.) — The matrix of alternatives on which to calculate weights.

* base_value (int or float.)- Value to be normalized by the number of criteria to create
the weights.

Returns
array of weights

Return type
numpy .ndarray

94 Chapter 4. Contents

https://docs.python.org/3/library/functions.html#int

Scikit-Criteria Documentation, Release 0.8.7.dev0

Examples

>>> from skcriteria.preprocess import equal_weights
>>> mtx = [[1, 2], [3, 4]]

>>> equal_weights(mtx)
array([0.5, 0.5])

class skcriteria.preprocessing.weighters.EqualWeighter (base_value=1.0)
Bases: SKCleighterABC

Assigns the same weights to all criteria.
The algorithm calculates the weights as the ratio of base_value by the total criteria.

property base_value
Value to be normalized by the number of criteria.

skcriteria.preprocessing.weighters.std_weights (matrix)
Calculate weights as the standard deviation of each criterion.

The result is normalized by the number of columns.
w; = —
T m

Where m is the number os columns/criteria in matrix.

Parameters
matrix (numpy.ndarray like.) — The matrix of alternatives on which to calculate weights.

Returns
array of weights

Return type
numpy .ndarray

Examples

>>> from skcriteria.preprocess import std_weights
>>> mtx = [[1, 21, [3, 411

>>> std_weights(mtx)
array([0.5, 0.5])

class skcriteria.preprocessing.weighters.StdWeighter
Bases: SKClWeighterABC

Set as weight the normalized standard deviation of each criterion.

skcriteria.preprocessing.weighters.entropy_weights (matrix)
Calculate the weights as the complement of the entropy of each criterion.

It uses the underlying scipy.stats.entropy function which assumes that the values of the criteria are proba-
bilities of a distribution.

The logarithmic base to use is the number of rows/alternatives in the matrix.

This routine will normalize the sum of the weights to 1.

4.3. skcriteria package 95

Scikit-Criteria Documentation, Release 0.8.7.dev0

See also:

scipy.stats.entropy
Calculate the entropy of a distribution for given probability values.

class skcriteria.preprocessing.weighters.EntropyWeighter
Bases: SKCleighterABC

Assigns the complement of the entropy of the criteria as weights.

It uses the underlying scipy.stats.entropy function which assumes that the values of the criteria are proba-

bilities of a distribution.
The logarithmic base to use is the number of rows/alternatives in the matrix.
This transformer will normalize the sum of the weights to 1.

See also:

scipy.stats.entropy
Calculate the entropy of a distribution for given probability values.

skcriteria.preprocessing.weighters.pearson_correlation(arr)
Return Pearson product-moment correlation coefficients.

This function is a thin wrapper of numpy . corrcoef.
Deprecated since version 0.8: Please use pd.DataFrame(arr.T) .correlation('pearson')

Parameters
arr (array like)— A 1-D or 2-D array containing multiple variables and observations. Each
row of arr represents a variable, and each column a single observation of all those variables.

Returns
R — The correlation coefficient matrix of the variables.

Return type
numpy.ndarray

See also:

numpy . corrcoef
Return Pearson product-moment correlation coefficients.

skcriteria.preprocessing.weighters.spearman_correlation(arr)
Calculate a Spearman correlation coefficient.

This function is a thin wrapper of scipy.stats.spearmanr.
Deprecated since version 0.8: Please use pd.DataFrame(arr.T) .correlation('spearman')

Parameters
arr (array like)— A 1-D or 2-D array containing multiple variables and observations. Each
row of arr represents a variable, and each column a single observation of all those variables.

Returns
R — The correlation coefficient matrix of the variables.

Return type
numpy.ndarray

See also:

96 Chapter 4. Contents

Scikit-Criteria Documentation, Release 0.8.7.dev0

scipy.stats.spearmanr
Calculate a Spearman correlation coefficient with associated p-value.

skcriteria.preprocessing.weighters.critic_weights (matrix, objectives, correlation="'pearson’,
scale=True)

Execute the CRITIC method without any validation.

class skcriteria.preprocessing.weighters.CRITIC(correlation="'pearson’, scale=True)
Bases: SKCWeighterABC

CRITIC (CRiteria Importance Through Intercriteria Correlation).

The method aims at the determination of objective weights of relative importance in MCDM problems. The
weights derived incorporate both contrast intensity and conflict which are contained in the structure of the deci-
sion problem.

Parameters

e correlation (str ["pearson", "spearman", "kendall"] or callable.) - This
is the correlation function used to evaluate the discordance between two criteria. In other
words, what conflict does one criterion a criterion with respect to the decision made by the
other criteria. By default the pearson correlation is used, and the spearman and kendall
correlation is also available implemented. It is also possible to provide a callable with input
two 1d arrays and returning a float. Note that the returned matrix from corr will have 1 along
the diagonals and will be symmetric regardless of the callable’s behavior

» scale (bool (default True)) — True if it is necessary to scale the data with skcriteria.
preprocessing.matrix_scale_by_cenit_distance prior to calculating the correla-
tion

Warning:

UserWarning:
If some objective is to minimize. The original paper only suggests using it against maximization cri-
teria, but there is no real mathematical constraint to use it for minimization.

References

[Diakoulaki et al., 1995]
CORRELATION = ('pearson', 'spearman', 'kendall')
property scale

Return if it is necessary to scale the data.

property correlation
Correlation function.

class skcriteria.preprocessing.weighters.Critic(*args, **kwargs)
Bases: CRITIC

CRITIC (CRiteria Importance Through Intercriteria Correlation).

The method aims at the determination of objective weights of relative importance in MCDM problems. The
weights derived incorporate both contrast intensity and conflict which are contained in the structure of the deci-
sion problem.

Deprecated since version 0.8: Use skcriteria.preprocessing.weighters.CRITIC instead

4.3. skcriteria package 97

https://docs.python.org/3/library/stdtypes.html#str

Scikit-Criteria Documentation, Release 0.8.7.dev0

Parameters

e correlation (str ["pearson", "spearman", "kendall"] or callable.) - This
is the correlation function used to evaluate the discordance between two criteria. In other
words, what conflict does one criterion a criterion with respect to the decision made by the
other criteria. By default the pearson correlation is used, and the spearman and kendall
correlation is also available implemented. It is also possible to provide a callable with input
two 1d arrays and returning a float. Note that the returned matrix from corr will have 1 along
the diagonals and will be symmetric regardless of the callable’s behavior

» scale (bool (default True)) — True if it is necessary to scale the data with skcriteria.
preprocessing.matrix_scale_by_cenit_distance prior to calculating the correla-
tion

Warning:

UserWarning:
If some objective is to minimize. The original paper only suggests using it against maximization cri-
teria, but there is no real mathematical constraint to use it for minimization.

References

[Diakoulaki et al., 1995]

4.3.4 skcriteria.cmp package

Utilities for a-posteriori analysis of experiments.

skcriteria.cmp.ranks_rev package

Rank reversal tools.

Rank reversal is a change in the preferred order of alternatives that occurs when the selection method or available
options change. It is a significant issue in decision-making, particularly in multi-criteria decision-making.

One way to test the validity of decision-making methods is to construct special test problems and then study the solu-
tions they derive. If the solutions exhibit some logic contradictions (in the form of undesirable rank reversals of the
alternatives), then one may argue that something is wrong with the method that derived them.

The module offers features for automating the execution and assessment of standard tests for rank reversal, primarily
focusing on alterations in the available options.

skcriteria.cmp.ranks_rev.ranks_inv_check module

Test Criterion #1 for evaluating the effectiveness MCDA method.

According to this criterion, the best alternative identified by the method should remain unchanged when a non-optimal
alternative is replaced by a worse alternative, provided that the relative importance of each decision criterion remains
the same.

class skcriteria.cmp.ranks_rev.rank_inv_check.RankInvariantChecker (dmaker, *, repeat=1, al-
low_missing_alternatives=False,
last_diff _strategy="median’,
random_state=None)

98 Chapter 4. Contents

https://docs.python.org/3/library/stdtypes.html#str

Scikit-Criteria Documentation, Release 0.8.7.dev0

Bases: SKCMethodABC
Test Criterion #1 for evaluating the effectiveness MCDA method.

According to this criterion, the best alternative identified by the method should remain unchanged when a non-
optimal alternative is replaced by a worse alternative, provided that the relative importance of each decision
criterion remains the same.

To illustrate, suppose that the MCDA method has ranked a set of alternatives, and one of the alternatives, A;,
is replaced by another alternative, A’;, which is less desirable than Ak. The MCDA method should still identify
the same best alternative when the alternatives are re-ranked using the same method. Furthermore, the relative
rankings of the remaining alternatives that were not changed should also remain the same.

The current implementation worsens each non-optimal alternative repeat times, and stores each resulting output
in a collection for comparison with the original ranking. In essence, the test is run once for each suboptimal
alternative.

This class assumes that there is another suboptimal alternative A; that is just the next worst alternative to Ay,
so that A, > A;. Then it generates a mutation Aj such that Aj is worse than A; but still better than A;
(A = Al > Aj). In the case that the worst alternative is reached, its degradation is limited by default with
respect to the median of all limits of the previous alternatives mutations, in order not to break he distribution of
each criterion.

Parameters

* dmaker (Decision maker - must implement the evaluate () method) — The MCDA method,
or pipeline to evaluate.

» repeat (int, default = 1)- How many times to mutate each suboptimal alternative.

The total number of rankings returned by this method is given by the number of alternatives
in the decision matrix minus one multiplied by repeat.

e allow_missing_alternatives (bool, default = False)-dmaker can somehow re-
turn rankings with fewer alternatives than the original ones (using a pipeline that implements
a filter, for example). By setting this parameter to True, the invariance test allows for miss-
ing alternatives in a ranking to be added with a value of the maximum value of the ranking
obtained + 1.

On the other hand, if the value is False, when a ranking is missing an alternative, the test
will fail with a ValueError.

If more than one alternative is removed, all of them are added with the same value

e last_diff_strategy (str or callable (default: "median").)-True if any mu-
tation is allowed that does not possess all the alternatives of the original decision matrix.

e random_state (int, numpy.random.default_rng or None (default: None)) —
Controls the random state to generate variations in the sub-optimal alternatives.

property dmaker
The MCDA method, or pipeline to evaluate.
property repeat
How many times to mutate each suboptimal alternative.

property allow_missing_alternatives

True if any mutation is allowed that does not possess all the alternatives of the original decision matrix.

4.3. skcriteria package 99

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int

Scikit-Criteria Documentation, Release 0.8.7.dev0

property last_diff_strategy
Since the least preferred alternative has no lower bound (since there is nothing immediately below it), this
function calculates a limit ceiling based on the bounds of all the other suboptimal alternatives.

property random_state
Controls the random state to generate variations in the sub-optimal alternatives.

evaluate(dm)
Executes a the invariance test.

Parameters
dm (DecisionMatrix) — The decision matrix to be evaluated.

Returns
An object containing multiple rankings of the alternatives, with information on any changes
made to the original decision matrix in the extra_ attribute. Specifically, the extra_ attribute
contains a an object in the key rrt/ that provides information on any changes made to the orig-
inal decision matrix, including the the noise applied to worsen any sub-optimal alternative.

Return type
RanksComparator

skcriteria.cmp.ranks_cmp module

Ranking comparison routines.

class skcriteria.cmp.ranks_cmp.RanksComparator (ranks)

Bases: Sequence, DiffEqualityMixin

Rankings comparator object.

This class is intended to contain a collection of rankings on which you want to do comparative analysis.
All rankings must have exactly the same alternatives, although their order may vary.

All methods support the untied parameter, which serves to untie rankings in case there are results that can
assign more than one alternative to the same position (e.g.” " ELECTRE2™).

Parameters
ranks (1ist)- List of (name, ranking) tuples of skcriteria.agg.RankResult with the same
alternatives.

See also:

skcriteria.cmp.mkrank_cmp
Convenience function for simplified ranks comparator construction.

property ranks
List of ranks in the comparator.
property named_ranks

Dictionary-like object, with the following attributes.

Read-only attribute to access any rank parameter by user given name. Keys are ranks names and values are
rannks parameters.

100

Chapter 4. Contents

https://docs.python.org/3/library/collections.abc.html#collections.abc.Sequence
https://docs.python.org/3/library/stdtypes.html#list

Scikit-Criteria Documentation, Release 0.8.7.dev0

diff (other, rtol=1e-05, atol=1e-08, equal_nan=True, check_dtypes=False)

Return the difference between two objects within a tolerance.
This method should be implemented by subclasses to define how differences between objects are calculated.

The tolerance parameters rtol and atol, equal_nan, and check_dtypes are provided to be used by the numpy
and pandas equality functions. These parameters allow you to customize the behavior of the equality com-
parison, such as setting the relative and absolute tolerance for numeric comparisons, considering NaN
values as equal, and checking for the data type of the objects being compared.

Parameters
¢ other (object) — The object to compare to.
e rtol (float, optional) - The relative tolerance parameter. Default is 1e-05.
e atol (float, optional)— The absolute tolerance parameter. Default is 1e-08.

¢ equal_nan (bool, optional)— Whether to consider NaN values as equal. Default is
True.

* check_dtypes (bool, optional) - Whether to check the data type of the objects. De-
fault is False.

Returns
The difference between the current and the other object.

Return type
the_diff

See also:

equals, aequals, numpy.isclose(), numpy.all(), numpy.any(), numpy.equal(), numpy.
allclose()

Notes

The tolerance values are positive, typically very small numbers. The relative difference (rtol * abs(b)) and
the absolute difference atol are added together to compare against the absolute difference between a and b.

NaNss are treated as equal if they are in the same place and if equal_nan=True. Infs are treated as equal
if they are in the same place and of the same sign in both arrays.

to_dataframe (¥, untied=False)
Convert the entire RanksComparator into a dataframe.

The alternatives are the rows, and the different rankings are the columns.

Parameters
untied (bool, default False) — If it is True and any ranking has ties, the RankResult.
untied_rank_ property is used to assign each alternative a single ranked order. On the
other hand, if it is False the rankings are used as they are.

Returns
A RanksComparator as pandas DataFrame.

Return type
pd.DataFrame

4.3.

skcriteria package 101

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

Scikit-Criteria Documentation, Release 0.8.7.dev0

corr (*, untied=False, **kwargs)
Compute pairwise correlation of rankings, excluding NA/null values.

By default the pearson correlation coefficient is used.

Please check the full documentation of a pandas.DataFrame.corr() method for details about the im-
plementation.

Parameters

« untied (bool, default False) — If it is True and any ranking has ties, the RankResult.
untied_rank_ property is used to assign each alternative a single ranked order. On the
other hand, if it is False the rankings are used as they are.

* kwargs — Other keyword arguments are passed to the pandas.DataFrame.corr()
method.

Returns
A DataFrame with the correlation between rankings.

Return type
pd.DataFrame

cov (¥, untied=False, **kwargs)
Compute pairwise covariance of rankings, excluding NA/null values.

Please check the full documentation of a pandas.DataFrame.cov() method for details about the imple-
mentation.

Parameters

e untied (bool, default False) — If it is True and any ranking has ties, the RankResult.
untied_rank_ property is used to assign each alternative a single ranked order. On the
other hand, if it is False the rankings are used as they are.

e kwargs — Other keyword arguments are passed to the pandas.DataFrame.cov()
method.

Returns
A DataFrame with the covariance between rankings.

Return type
pd.DataFrame

r2_score (*, untied=False, **kwargs)

Compute pairwise coefficient of determination regression score function of rankings, excluding NA/null
values.

Best possible score is 1.0 and it can be negative (because the model can be arbitrarily worse).

Please check the full documentation of a sklearn.metrics.r2_score function for details about the
implementation and the behaviour.

Parameters

¢ untied (bool, default False) — If it is True and any ranking has ties, the RankResult.
untied_rank_ property is used to assign each alternative a single ranked order. On the
other hand, if it is False the rankings are used as they are.

» kwargs — Other keyword arguments are passed to the sklearn.metrics.r2_score()
function.

Returns
A DataFrame with the coefficient of determination between rankings.

102 Chapter 4. Contents

Scikit-Criteria Documentation, Release 0.8.7.dev0

Return type
pd.DataFrame

distance(*, untied=False, metric="hamming', **kwargs)

Compute pairwise distance between rankings.

By default the ‘hamming’ distance is used, which is simply the proportion of disagreeing components in
Two rankings.

Please check the full documentation of a scipy.spatial.distance.pdist function for details about
the implementation and the behaviour.

Parameters

e untied (bool, default False) — If it is True and any ranking has ties, the RankResult.
untied_rank_ property is used to assign each alternative a single ranked order. On the
other hand, if it is False the rankings are used as they are.

e metric (str or function, default "hamming") — The distance metric to use. The dis-
tance function can be ‘braycurtis’, ‘canberra’, ‘chebyshev’, ‘cityblock’, ‘correlation’, ‘co-
sine’, ‘dice’, ‘euclidean’, ‘hamming’, ‘jaccard’, ‘jensenshannon’, ‘kulczynskil’, ‘maha-
lanobis’, ‘matching’, ‘minkowski’, ‘rogerstanimoto’, ‘russellrao’, ‘seuclidean’, ‘sokalmich-
ener’, ‘sokalsneath’, ‘sqeuclidean’, ‘yule’.

e kwargs — Other keyword arguments are passed to the scipy.spatial.distance.
pdist () function.

Returns
A DataFrame with the distance between rankings.

Return type
pd.DataFrame

property plot

Plot accessor.

class skcriteria.cmp.ranks_cmp.RanksComparatorPlotter (ranks_cmp)

Bases: AccessorABC
RanksComparator plot utilities.
Kind of plot to produce:
* ‘flow’ : Changes in the rankings of the alternatives as flow lines (default)
* ‘reg’ : Pairwise rankings data and a linear regression model fit plot.
* ‘heatmap’ : Rankings as a color-encoded matrix.
e ‘corr’ : Pairwise correlation of rankings as a color-encoded matrix.
e ‘cov’ : Pairwise covariance of rankings as a color-encoded matrix.

* ‘r2_score’ : Pairwise coefficient of determination regression score function of rankings as a color-encoded
matrix.

» ‘distance’ : Pairwise distance between rankings as a color-encoded matrix.
* ‘box’ : Box-plot of rankings with respect to alternatives
* ‘bar’ : Ranking of alternatives by method with vertical bars.

e ‘barh’ : Ranking of alternatives by method with horizontal bars.

4.3. skcriteria package 103

Scikit-Criteria Documentation, Release 0.8.7.dev0

flow(*, untied=False, grid_kws=None, **kwargs)

Represents changes in the rankings of the alternatives as lines flowing through the ranking-methods.
Parameters

¢ untied (bool, default False) — If it is True and any ranking has ties, the RankResult.
untied_rank_ property is used to assign each alternative a single ranked order. On the
other hand, if it is False the rankings are used as they are.

e grid_kws (dict or None) — Dict with keyword arguments passed to matplotlib.
axes.plt.Axes.grid

* kwargs — Other keyword arguments are passed to the seaborn.lineplot() function.
except for data, estimator and sort.

Return type
matplotlib.axes.Axes or numpy.ndarray of them

reg(*, untied=False, r2=True, palette=None, legend=True, r2_fimt="2g', r2_kws=None, **kwargs)
Plot a pairwise rankings data and a linear regression model fit.

Parameters

e untied (bool, default False) — If it is True and any ranking has ties, the RankResult.
untied_rank_ property is used to assign each alternative a single ranked order. On the
other hand, if it is False the rankings are used as they are.

e r2 (bool, default True) — If True, the coeflicient of determination results are added to the
regression legend.

* palette (matplotlib/seaborn color palette, default None) — Set of colors for mapping the
hue variable.

¢ legend (bool, default True) — If False, suppress the legend for semantic variables.

o r2_fmt (str, default "2.g") — String formatting code to use when adding the coefficient of
determination.

e r2_kws (dict or None)- Dict with keywords arguments passed to sklearn.metrics.
r2_score() function.

* kwargs — Other keyword arguments are passed to the seaborn.lineplot() function.

Return type
matplotlib.axes.Axes or numpy.ndarray of them

heatmap (*, untied=False, **kwargs)

Plot the rankings as a color-encoded matrix.
Parameters

e untied (bool, default False) — If it is True and any ranking has ties, the RankResult.
untied_rank_ property is used to assign each alternative a single ranked order. On the
other hand, if it is False the rankings are used as they are.

¢ kwargs — Other keyword arguments are passed to the seaborn.heatmap() function.

Return type
matplotlib.axes.Axes or numpy.ndarray of them

corr (*, untied=False, corr_kws=None, **kwargs)

Plot the pairwise correlation of rankings as a color-encoded matrix.

By default the pearson correlation coefficient is used.

104 Chapter 4. Contents

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict

Scikit-Criteria Documentation, Release 0.8.7.dev0

Parameters

¢ untied (bool, default False) — If it is True and any ranking has ties, the RankResult.
untied_rank_ property is used to assign each alternative a single ranked order. On the
other hand, if it is False the rankings are used as they are.

e corr_kws (dict or None) — Dict with keywords arguments passed the pandas.
DataFrame.corr () method.

¢ kwargs — Other keyword arguments are passed to the seaborn.heatmap() function.

Return type
matplotlib.axes.Axes or numpy.ndarray of them

cov (*, untied=False, cov_kws=None, **kwargs)

Plot the pairwise covariance of rankings as a color-encoded matrix.
Parameters

e untied (bool, default False) — If it is True and any ranking has ties, the RankResult.
untied_rank_ property is used to assign each alternative a single ranked order. On the
other hand, if it is False the rankings are used as they are.

e cov_kws (dict or None) — Dict with keywords arguments passed the pandas.
DataFrame.cov() method.

* kwargs — Other keyword arguments are passed to the seaborn.heatmap () function.

Return type
matplotlib.axes.Axes or numpy.ndarray of them

r2_score (untied=False, r2_kws=None, **kwargs)

Plot the pairwise coefficient of determination regression score function of rankings as a color-encoded
matrix.

Parameters

e untied (bool, default False) — If it is True and any ranking has ties, the RankResult.
untied_rank_ property is used to assign each alternative a single ranked order. On the
other hand, if it is False the rankings are used as they are.

e cov_kws (dict or None) — Dict with keywords arguments passed the pandas.
DataFrame.cov() method.

* kwargs — Other keyword arguments are passed to the seaborn.heatmap () function.

Return type
matplotlib.axes.Axes or numpy.ndarray of them

distance (*, untied=False, metric="hamming', distance_kws=None, **kwargs)

Plot the pairwise distance between rankings as a color-encoded matrix.

By default the ‘hamming’ distance is used, which is simply the proportion of disagreeing components in
Two rankings.

Parameters

e untied (bool, default False) — If it is True and any ranking has ties, the RankResult.
untied_rank_ property is used to assign each alternative a single ranked order. On the
other hand, if it is False the rankings are used as they are.

4.3.

skcriteria package 105

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict

Scikit-Criteria Documentation, Release 0.8.7.dev0

e metric (str or function, default "hamming") — The distance metric to use. The dis-
tance function can be ‘braycurtis’, ‘canberra’, ‘chebyshev’, ‘cityblock’, ‘correlation’, ‘co-
sine’, ‘dice’, ‘euclidean’, ‘hamming’, ‘jaccard’, ‘jensenshannon’, ‘kulczynskil’, ‘maha-
lanobis’, ‘matching’, ‘minkowski’, ‘rogerstanimoto’, ‘russellrao’, ‘seuclidean’, ‘sokalmich-
ener’, ‘sokalsneath’, ‘sqeuclidean’, ‘yule’.

» distance_kws (dict or None) — Dict with keywords arguments passed the scipy.
spatial.distance.pdist function

* kwargs — Other keyword arguments are passed to the seaborn.heatmap () function.

Return type
matplotlib.axes.Axes or numpy.ndarray of them

box (*, untied=False, **kwargs)
Draw a boxplot to show rankings with respect to alternatives.

Parameters

e untied (bool, default False) — If it is True and any ranking has ties, the RankResult.
untied_rank_ property is used to assign each alternative a single ranked order. On the
other hand, if it is False the rankings are used as they are.

¢ kwargs — Other keyword arguments are passed to the seaborn.boxplot() function.

Return type
matplotlib.axes.Axes or numpy.ndarray of them

bar (*, untied=False, **kwargs)
Draw plot that presents ranking of alternatives by method with vertical bars.

Parameters

¢ untied (bool, default False) — If it is True and any ranking has ties, the RankResult.
untied_rank_ property is used to assign each alternative a single ranked order. On the
other hand, if it is False the rankings are used as they are.

* kwargs — Other keyword arguments are passed to the pandas.Dataframe.plot.bar()
method.

Return type
matplotlib.axes.Axes or numpy.ndarray of them

barh (*, untied=False, **kwargs)
Draw plot that presents ranking of alternatives by method with horizontal bars.

Parameters

¢ untied (bool, default False) — If it is True and any ranking has ties, the RankResult.
untied_rank_ property is used to assign each alternative a single ranked order. On the
other hand, if it is False the rankings are used as they are.

» kwargs — Other keyword arguments are passed to the pandas.Dataframe.plot.barh()
method.

Return type
matplotlib.axes.Axes or numpy.ndarray of them

skcriteria.cmp.ranks_cmp.mkrank_cmp (*ranks)
Construct a RankComparator from the given rankings.

This is a shorthand for the RankComparator constructor; it does not require, and does not permit, naming the
estimators. Instead, their names will be set to the method attribute of the rankings automatically.

106 Chapter 4. Contents

https://docs.python.org/3/library/stdtypes.html#dict

Scikit-Criteria Documentation, Release 0.8.7.dev0

Parameters
*ranks (1ist of RankResult objects) - List of the scikit-criteria RankResult objcects.

Returns
remp — Returns a scikit-criteria RanksComparator object.

Return type
RanksComparator

4.3.5 skcriteria.datasets package

The skcriteria.datasets module includes utilities to load datasets.

skcriteria.datasets.load_simple_stock_selection()

Simple stock selection decision matrix.
This matrix was designed primarily for teaching and evaluating the behavior of an experiment.

Among the data we can find: two maximization criteria (ROE, CAP), one minimization criterion (RI), dominated
alternatives (FX), and one alternative with an outlier criterion (ROE, MM = 1).

The criteria and alternatives in Scikit-Criteria are original to the authors, but the numerical values used were
taken from an unknown source that has since been forgotten.

Description:

In order to decide to buy a series of stocks, a company studied 5 candidate investments: PE, JN, AA, FX, MM
and GN. The finance department decides to consider the following criteria for selection:

1. ROE (Max): Return % for each monetary unit invested.
2. CAP (Max): Years of market capitalization.
3. RI (Min): Risk of the stock.

skcriteria.datasets.load_van202levaluation(windows_size=7)

Dataset extracted from from historical time series cryptocurrencies.

This dataset is extracted from:

Van Heerden, N., Cabral, J. y Luczywo, N. (2021). Evaluacién de la
importancia de criterios para la seleccién de criptomonedas.
XXXIV ENDIO - XXXII EPIO Virtual 2021, Argentina.

The nine available alternatives are based on the ranking of the 20 cryptocurrencies with the largest market capi-
talization calculated on the basis of circulating supply, according to information retrieved from Cryptocurrency
Historical Prices” retrieved on July 21st, 2021, from there only the coins with complete data between October
9th, 2018 to July 6th of 2021, excluding stable-coins, since they maintain a stable price and therefore do not carry
associated yields; the alternatives that met these requirements turned out to be: Cardano (ADA), Binance coin
(BNB), Bitcoin (BTC), Dogecoin (DOGE), Ethereum (ETH), Chainlink (LINK), Litecoin (LTC), Stellar (XLM)
and Ripple (XRP).

Two decision matrices were created for two sizes of overlapping moving windows: 7 and 15 days. Six criteria
were defined on these windows that seek to represent returns and risks:

* xRv - average Window return (zRV') - Maximize: is the average of the differences between the closing
price of the cryptocurrency on the last day and the first day of each window, divided by the price on the
first day.

¢ SRV - window return deviation (sRV’) - Minimize: is the standard deviation of window return. The greater
the deviation, the returns within the windows have higher variance and are unstable.

4.3. skcriteria package 107

https://docs.python.org/3/library/stdtypes.html#list

Scikit-Criteria Documentation, Release 0.8.7.dev0

* xVV - average of the volume of the window (zV'V') - Maximize: it is the average of the summations of the
transaction amount of the cryptocurrency in dollars in each window, representing a liquidity measure of
the asset.

* sVV - window volume deviation (sV'V') - Minimize: it is the deviation of the window volumes. The greater
the deviation, the volumes within the windows have higher variance and are unstable.

 xR2 - mean of the correlation coefficient (ZR?) - Maximize: it is the mean of the R? of the fit of the linear
trends with respect to the data. It is a measure that defines how well it explains that linear trend to the data
within the window.

* xm - mean of the slope (zm) - Maximize: it is the mean of the slope of the linear trend between the closing
prices in dollars and the volumes traded in dollars of the cryptocurrency within each window.

Parameters

windows_size (7 o 15, default 7)-Ifthedecision matrix based on 7 or 15 day overlapping
moving windows is desired.

References

[VanHeerden et al., 2021b] [VanHeerden et al., 2021a] [Rajkumar, 2021]

4.3.6 skcriteria.pipeline module

The Module implements utilities to build a composite decision-maker.

class skcriteria.pipeline.SKCPipeline (steps)

Bases: SKCMethodABC
Pipeline of transforms with a final decision-maker.

Sequentially apply a list of transforms and a final decisionmaker. Intermediate steps of the pipeline must be
‘transforms’, that is, they must implement transform method.

The final decision-maker only needs to implement evaluate.

The purpose of the pipeline is to assemble several steps that can be applied together while setting different
parameters.

Parameters
steps (Iist) — List of (name, transform) tuples (implementing evaluate/transform) that are
chained, in the order in which they are chained, with the last object an decision-maker.

See also:

skcriteria.pipeline.mkpipe
Convenience function for simplified pipeline construction.

property steps
List of steps of the pipeline.
property named_steps
Dictionary-like object, with the following attributes.

Read-only attribute to access any step parameter by user given name. Keys are step names and values are
steps parameters.

108

Chapter 4. Contents

https://docs.python.org/3/library/stdtypes.html#list

Scikit-Criteria Documentation, Release 0.8.7.dev0

evaluate(dm)

Run the all the transformers and the decision maker.

Parameters
dm (skcriteria.data.DecisionMatrix) — Decision matrix on which the result will be
calculated.

Returns
r — Whatever the last step (decision maker) returns from their evaluate method.

Return type
Result

transform(dm)
Run the all the transformers.

Parameters
dm (skcriteria.data.DecisionMatrix)— Decision matrix on which the transformations
will be applied.

Returns
dm — Transformed decision matrix.

Return type
skcriteria.data.DecisionMatrix

skcriteria.pipeline.mkpipe (*steps)
Construct a Pipeline from the given transformers and decision-maker.

This is a shorthand for the SKCPipeline constructor; it does not require, and does not permit, naming the esti-
mators. Instead, their names will be set to the lowercase of their types automatically.

Parameters
*steps (list of transformers and decision-maker object) — List of the scikit-
criteria transformers and decision-maker that are chained together.

Returns
p — Returns a scikit-criteria SKCPipeline object.

Return type
SKCPipeline

4.3.7 skcriteria.extend module

Functionalities for the user’s extension of scikit-criteria.

This module introduces decorators that enable the creation of aggregation and transformation models using only func-
tions.

It is important to note that models created with these decorators are much less flexible than those created using inheri-
tance and lack certain properties of real objects.

exception skcriteria.extend.NonStandardNameWarning

Bases: UserWarning
Custom warning class to indicate that a name does not follow a specific standard.

This warning is raised when a given name does not adhere to the specified naming convention.

4.3. skcriteria package 109

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/exceptions.html#UserWarning

Scikit-Criteria Documentation, Release 0.8.7.dev0

skcriteria.extend.mkagg(maybe_func=None, **hparams)

Decorator factory function for creating aggregation classes.
Parameters

* maybe_func (callable, optional) - Optional aggregation function to be wrapped into
a class. If provided, the decorator is applied immediately.

The decorated function should receive the parameters ‘matrix’, ‘objectives’, ‘weights’,
‘dtypes’, ‘alternatives’, ‘criteria’, ‘hparams’, or kwargs.

Additionally, it should return an array with rankings for each alternative and an optional
dictionary with calculations that you wish to store in the ‘extra’ attribute of the ranking.”

» **hparams (keyword arguments)—Hyperparameters specific to the aggregation function.

Returns
Agg — Aggregation class decorator or Aggregatio model with added functionality.

Return type
class or decorator

Notes

This decorator is designed for creating aggregation model from aggregation functions. It provides an interface

for creating aggregated decision-making models.

Examples

>>> @mkagg

>>> def MyAgg(**kwargs):

>>> # Implementation of the aggregation function

The above example will create an aggregation class with the name ‘MyAgg’ based on the provided aggregation

function.

>>> @mkagg(foo=1)
>>> def MyAgg(**kwargs):
>>> # Implementation of the aggregation function

The above example will create an aggregation class with the specified hyperparameter ‘foo’ and the name

‘MyAgg’.
skcriteria.extend.mktransformer (maybe_func=None, **hparams)
Decorator factory function for creating transformation classes.

Parameters

* maybe_func (callable, optional) — Optional transformation function to be wrapped
into a class. If provided, the decorator is applied immediately.

The decorated function should receive the parameters ‘matrix’, ‘objectives’, ‘weights’,
‘dtypes’, ‘alternatives’, ‘criteria’, ‘hparams’, or kwargs.

In addition, it must return a dictionary whose keys are some as the received parameters (in-
cluding the keys in ‘kwargs’). These values replace those of the original array. If you return
‘hparams,’ the transformer will ignore it.

110 Chapter 4. Contents

Scikit-Criteria Documentation, Release 0.8.7.dev0

If you want the transformer to infer the types again, return dtypes with value None.
It is the function’s responsibility to maintain compatibility.

» **hparams (keyword arguments)— Hyperparameters specific to the transformation func-
tion.

Returns
Trans — Transformation class decorator or Transformation model with added functionality.

Return type
class or decorator

Notes

This decorator is designed for creating transformation models from transformation functions. It provides an
interface for creating transformed decision-making models.

Examples

>>> @mktrans

>>> def MyTrans(**kwargs):

>>> # Implementation of the transformation function
>>> pass

The above example will create a transformation class with the name ‘MyTrans’ based on the provided transfor-
mation function.

>>> @mktrans(foo=1)

>>> def MyTrans(**kwargs):

>>> # Implementation of the transformation function
>>> pass

The above example will create a transformation class with the specified hyperparameter ‘foo’ and the name
‘MyTrans’.

4.3.8 skcriteria.testing module

Public testing utility functions.

This module exposes “assert” functions which facilitate the comparison in a testing environment of objects created in
skcriteria.

The functionalities are extensions of those present in “pandas.testing” and “numpy.testing”.

skcriteria.testing.assert_dmatrix_equals (left, right, **diff_kws)

Asserts that two DecisionMatrix objects are equal by comparing their attributes with some tolerance.
Parameters
* left (DecisionMatrix) — The first DecisionMatrix object to compare.
* right (DecisionMatrix) — The second DecisionMatrix object to compare.

o **diff kws (dict) — Additional keyword arguments to pass to the DecisionMatrix.diff
method.

4.3. skcriteria package 111

https://docs.python.org/3/library/stdtypes.html#dict

Scikit-Criteria Documentation, Release 0.8.7.dev0

Raises
AssertionError - If the two DecisionMatrix objects are not equal.

skcriteria.testing.assert_result_equals(left, right, **diff_kws)
Asserts that two results objects are equal by comparing their attributes with some tolerance.

Parameters
o left (skcriteria.agg.ResultABC) — The left result to compare.
» right (skcriteria.agg.ResultABC) — The right result to compare.
o **diff kws (dict) - Optional keyword arguments to pass to the result diff method.

Raises
AssertionError if the two results are not equal. —

skcriteria.testing.assert_rcmp_equals (left, right, **diff _kws)

Asserts that the left and right RankComparator objects are equal by comparing their attributes with some toler-
ance.

Parameters
» left (RanksComparator) — The left object to compare.
» right (Any) — The right object to compare.

o **diff kws (keyword arguments) — Additional keyword arguments to pass to the diff
method.

Raises
» AssertionError — If the left object is not an instance of RanksComparator.
* AssertionError — If the right object is not an instance of RanksComparator.
* AssertionError — If the left and right objects have different lengths.

» AssertionError — If the ranks at any index of the left and right objects are not equal.

4.3.9 skcriteria.utils package

Utilities for skcriteria.

skcriteria.utils.accabc module

Accessor base class.

class skcriteria.utils.accabc.AccessorABC
Bases: ABC

Generalization of the accessor idea for use in scikit-criteria.

Instances of this class are callable and accept as the first parameter ‘kind’ the name of a method to be executed
followed by all the all the parameters of this method.

If ‘kind’ is None, the method defined in the class variable ¢_default_kind_kind’ is used.

The last two considerations are that ‘kind’, cannot be a private method and that all subclasses of the method and
that all AccessorABC subclasses have to redefine ‘_default_kind’.

112 Chapter 4. Contents

https://docs.python.org/3/library/exceptions.html#AssertionError
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/exceptions.html#AssertionError
https://docs.python.org/3/library/exceptions.html#AssertionError
https://docs.python.org/3/library/exceptions.html#AssertionError
https://docs.python.org/3/library/exceptions.html#AssertionError
https://docs.python.org/3/library/abc.html#abc.ABC

Scikit-Criteria Documentation, Release 0.8.7.dev0

skcriteria.utils.bunch module

Container object exposing keys as attributes.

class skcriteria.utils.bunch.Bunch(name, data)

Bases: Mapping
Container object exposing keys as attributes.
Concept based on the sklearn.utils.Bunch.

Bunch objects are sometimes used as an output for functions and methods. They extend dictionaries by enabling
values to be accessed by key, bunch/ “value_key”], or by an attribute, bunch.value_key.

Examples

>>> b = SKCBunch("data", {"a": 1, "b": 2})
>>> b
data({a, b})
>>> b['b']

2

>>> b.b

2

>>> b.a =3
>>> b['a']

3

>>> b.c = 6
>>> b['c']

6

skcriteria.utils.cmanagers module

Multiple context managers to use inside scikit-criteria.

skcriteria.utils.cmanagers.df_temporal_header (df, header, name=None)

Temporarily replaces a DataFrame columns names.
Optionally also assign another name to the columns.
Parameters
* header (sequence) — The new names of the columns.

* name (str or None (default None))- New name for the index containing the columns
in the DataFrame. If ‘None’ the original name of the columns present in the DataFrame is
preserved.

exception skcriteria.utils.cmanagers.HiddenAlreadyUsedInThisContext

Bases: RuntimeError
Raised when a context attempts to use the ‘hidden’ context manager more than once within the same scope.

exception skcriteria.utils.cmanagers.NonGlobalHidden

Bases: RuntimeError

Exception raised when the ‘hidden’ decorator is used in a context that is not the global scope of a module.

4.3. skcriteria package 113

https://docs.python.org/3/library/collections.abc.html#collections.abc.Mapping
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#RuntimeError
https://docs.python.org/3/library/exceptions.html#RuntimeError

Scikit-Criteria Documentation, Release 0.8.7.dev0

This exception indicates that the ‘hidden’ decorator should only be applied globally, outside of any functions or
methods, and an attempt to use it within a local context (e.g., inside a function or method) has been detected.

skcriteria.utils.cmanagers.hidden(*, hide_this=True, dry=False)
A context manager for hiding objects in the global scope.

Parameters

* hide_this (bool, optional) — Whether to hide the ‘hidden’ context manager itself
and/or the hidden module. Defaults to True.

e dry (bool, optional, default False)-Ifis True, the objects are not hide. Useful for
testing.

Raises
e NonGlobalHidden — If ‘hidden’ is declared inside a function, class or method.

* HiddenAlreadyUsedInThisContext — If the ‘hidden’ context manager is used more than
once in the same context.

Yields
None

Notes

» This context manager is intended to be used globally (outside any functions or methods).

* It hides objects within the global scope for the duration of the context.

Implementation Details

» The context manager retrieves the current frame and ensures it is used globally.
« It captures the state of the global scope before entering the context.
* Objects introduced within the context are hidden in the global scope.

e The ‘__dir__’ attribute of the global scope is customized to include logic to hide the objects introduced
within the context.

skcriteria.utils.deprecate module

Multiple decorator to use inside scikit-criteria.

exception skcriteria.utils.deprecate.SKCriteriaDeprecationWarning

Bases: Deprecationilarning
Skcriteria deprecation warning.

exception skcriteria.utils.deprecate.SKCriteriaFutureWarning

Bases: Futurellarning
Skcriteria future warning.

skcriteria.utils.deprecate.add_sphinx_deprecated_directive(doc, *, reason, version)
Add the Sphinx deprecation directive to a given doc.

Parameters

114 Chapter 4. Contents

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/exceptions.html#DeprecationWarning
https://docs.python.org/3/library/exceptions.html#FutureWarning

Scikit-Criteria Documentation, Release 0.8.7.dev0

* doc (str)— The original documentation.
* reason (str)— Reason message which documents the deprecation in your library.

* version (str) — Version of your project which marks as this feature. If you follow the
Semantic Versioning, the version number has the format “MAJOR.MINOR.PATCH”.

skcriteria.utils.deprecate.warn(reason, version, *, category=<class
'skcriteria.utils.deprecate. SKCriteriaDeprecationWarning'>)

Raises a deprecation warning.
It will result in a warning being emitted immediately
Parameters
* reason (str)— Reason message which documents the deprecation in your library.

» version (str) — Version of your project which marks as this feature. If you follow the
Semantic Versioning, the version number has the format “MAJOR.MINOR.PATCH”.

* category (default='SKCriteriaDeprecationWarning') — Class of the warning.

skcriteria.utils.deprecate.deprecated(*, reason, version)

Mark functions, classes and methods as deprecated.

It will result in a warning being emitted when the object is called, and the “deprecated” directive was added to
the docstring.

Parameters
* reason (str)— Reason message which documents the deprecation in your library.

* version (str) — Version of your project which deprecates this feature. If you follow the
Semantic Versioning, the version number has the format “MAJOR.MINOR.PATCH”.

Notes

This decorator is a thin layer over deprecated.deprecated().
Check: <github https://pypi.org/project/Deprecated/>__

skcriteria.utils.deprecate.will_change(*, reason, version)

Mark functions, classes and methods as “to be changed”.

It will result in a warning being emitted when the object is called, and the “deprecated” directive was added to
the docstring.

Parameters
* reason (str)— Reason message which documents the “to be changed” in your library.

* version (str) — Version of your project which marks as this feature. If you follow the
Semantic Versioning, the version number has the format “MAJOR.MINOR.PATCH”.

4.3. skcriteria package 115

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://semver.org/
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://semver.org/
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://semver.org/
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://semver.org/

Scikit-Criteria Documentation, Release 0.8.7.dev0

Notes

This decorator is a thin layer over deprecated.deprecated().

Check: <github https://pypi.org/project/Deprecated/>__

skcriteria.utils.dict_cmp module

Utilities to compare two dictionaries with numpy arrays.

skcriteria.utils.dict_cmp.dict_allclose(left, right, rtol=1e-05, atol=1e-08, equal_nan=False)

Compares two dictionaries. If values of type “numpy.array” are encountered, the function utilizes
“numpy.allclose” for comparison.

Parameters
e left (dict) — The left dictionary.
e right (dict) — The right dictionary.
e rtol (flIoat, optional) - The relative tolerance parameter for np.allclose.
* atol (float, optional)— The absolute tolerance parameter for np.allclose.
* equal_nan (bool, optional)- Whether to consider NaN values as equal.

Returns
True if the dictionaries are equal, False otherwise.

Return type
bool

Notes

This function iteratively compares the values of corresponding keys in the input dictionaries left and right. It
handles various data types, including NumPy arrays, and uses the np.allclose function for numeric array com-
parisons with customizable tolerance levels. The comparison is performed iteratively, and the function returns
True if all values are equal based on the specified criteria. If the dictionaries have different lengths or keys, or if
the types of corresponding values differ, the function returns False.

skcriteria.utils.doctools module

Multiple decorator to use inside scikit-criteria.
skcriteria.utils.doctools.doc_inherit (parent, warn_class=True)
Inherit the ‘parent’ docstring.

Returns a function/method decorator that, given parent, updates the docstring of the decorated function/method
based on the numpy style and the corresponding attribute of parent.

Parameters

* parent (Union[str, Any]) - The docstring, or object of which the docstring is utilized
as the parent docstring during the docstring merge.

» warn_class (bool) — If it is true, and the decorated is a class, it throws a warning since
there are some issues with inheritance of documentation in classes.

116 Chapter 4. Contents

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool

Scikit-Criteria Documentation, Release 0.8.7.dev0

Notes

This decorator is a thin layer over custom_inherit.doc_inherit decorator().

Check: <github https://github.com/rsokl/custom_inherit>__

skcriteria.utils.lp module

Utilities for linnear programming based on PuLP.
This file contains an abstraction class to manipulate in a more OOP way the underlining PuLP model

skcriteria.utils.lp.is_solver_available(solver)

Return True if the solver is available.

class skcriteria.utils.lp.Float(name, low=None, up=None, *args, **kwargs)

Bases: _Var

pulp.LpVariable with pulp.LpContinuous category.

Example

This two codes are equivalent.

x = pulp.LpVariable("x", cat=pulp.LpContinuous) # pure PuLP
x = 1p.Float("x") # skcriteria.utils.lp version

var_type = 'Continuous'

class skcriteria.utils.lp.Int(name, low=None, up=None, *args, **kwargs)

Bases: _Var

pulp.LpVariable with pulp.LpInteger category.

Example

This two codes are equivalent.

pulp.LpVariable("x", cat=pulp.LpInteger) # pure PuLP
lp.Int("x") # skcriteria.utils.lp version

X
X

var_type = 'Integer'

class skcriteria.utils.lp.Bool (name, low=None, up=None, *args, **kwargs)

Bases: _Var

pulp.LpVariable with pulp.LpBinary category.

4.3. skcriteria package 117

Scikit-Criteria Documentation, Release 0.8.7.dev0

Example

This two codes are equivalent.

x = pulp.LpVariable("x", cat=pulp.LpBinary) # pure PulLP
X 1p.Bool("x") # skcriteria.utils.lp version

var_type = 'Binary'
class skcriteria.utils.lp.Minimize(z, name='no-name', solver=None, **solver_kwds)
Bases: _LPBase
Creates a Minimize LP problem with a way better sintax than PuLP.
Parameters
e z (LpAffineExpression) — A linear combination of LpVariables.
* name (str (default="no-name"))— Name of the problem.

* solver (None, str or any pulp.LpSolver instance (default=None)) — Solver of the problem.
If it’s None, the default solver is used. PULP is an alias os None.

» solver_kwds (dict) — Dictionary of keyword arguments for the solver.

Example

variable declaration

x0 lp.Float("x0", low=0)
x1 lp.Float("x1", low=0)
x2 = lp.Float("x2", low=0)

model

model = lp.Maximize(# or Ip.Minimize
z=250 * x0 + 130 * x1 + 350 * x2

)

constraints

model . subject_to(
120 * x0 + 200 * x1 + 340 * x2 <= 500,
-20 * x0 + -40 * x1 + -15 * x2 <= -15,
800 * x0 + 1000 * x1 + 600 * x2 <= 1000,

Also you can create the model and the constraints in one “line”.

model = lp.Maximize(# or lp.Minimize

z=250 * x0 + 130 * x1 + 350 * x2, solver=solver
) .subject_to(

120 * x0 + 200 * x1 + 340 * x2 <= 500,

-20 * x0 + -40 * x1 + -15 * x2 <= -15,

800 * x0 + 1000 * x1 + 600 * x2 <= 1000,

sense = 1

118 Chapter 4. Contents

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict

Scikit-Criteria Documentation, Release 0.8.7.dev0

class skcriteria.utils.lp.Maximize(z, name="no-name’, solver=None, **solver_kwds)

Bases: _LPBase
Creates a Maximize LP problem with a way better sintax than PuLP.

Parameters

e z (LpAffineExpression) — A linear combination of LpVariables.
* name (str (default="no-name"))— Name of the problem.

* solver (None, str or any pulp.LpSolver instance (default=None)) — Solver of the problem.
If it’s None, the default solver is used. PULP is an alias os None.

* solver_kwds (dict) — Dictionary of keyword arguments for the solver.

Example

variable declaration

x0 = lp.Float("x0", low=0)
x1 1p.Float("x1", low=0)
x2 = lp.Float("x2", low=0)

model

model = lp.Maximize(# or Ip.Minimize
z=250 * x0 + 130 * x1 + 350 * x2

)

constraints

model . subject_to(
120 * x0 + 200 * x1 + 340 * x2 <= 500,
-20 * x0 + -40 * x1 + -15 * x2 <= -15,
800 * x0 + 1000 * x1 + 600 * x2 <= 1000,

Also you can create the model and the constraints in one “line”.

model = 1lp.Maximize(# or lp.Minimize

z=250 * x0 + 130 * x1 + 350 * x2, solver=solver
).subject_to(

120 * x0 + 200 * x1 + 340 * x2 <= 500,

-20 * x0 + -40 * x1 + -15 * x2 <= -15,

800 * x0 + 1000 * x1 + 600 * x2 <= 1000,

sense = -1

4.3. skcriteria package

119

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict

Scikit-Criteria Documentation, Release 0.8.7.dev0

skcriteria.utils.object_diff module

Utilities to calculate the difference between two objects.

skcriteria.utils.object_diff.MISSING = <MISSING>

A singleton object used to represent missing values.

skcriteria.utils.object_diff.diff(left, right, **members)

Calculates the difference between two objects, left and right, and returns a Difference object.
Parameters
» left (object) — The first object to compare.
» right (object) — The second object to compare.

* **members (dict) — Keyword named arguments representing members to compare. The
values of the members is the function to compare the members values

Returns
A Difference object representing the differences between the two objects.

Return type
Difference

Notes

This function compares the values of corresponding members in the left and right objects. If a member is missing
in either object, it is considered a difference. If a member is present in both objects, it is compared using the
corresponding comparison function specified in members.

Examples

>>> obj_a = SomeClass(a=1, b=2)

>>> obj_b = SomeClass(a=1, b=3, c=4)

>>> diff(obj_a, obj_b, a=np.equal, b=np.equal)
<Difference different_types=False members_diff=('b', 'c')>

class skcriteria.utils.object_diff.DiffEqualityMixin

Bases: ABC
Abstract base class for classes with a diff method.

This class provides methods for comparing objects with a tolerance, allowing for differences within specified
limits. It is designed to be used with numpy and pandas equality functions.

Extra methods:

¢ aequals
almost-equals, Check if the two objects are equal within a tolerance.

¢ equals(other)
Return True if the objects are equal.

e __eq__(other)
Implement equality comparison.

* __ne__(other)
Implement inequality comparison.

120

Chapter 4. Contents

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/abc.html#abc.ABC

Scikit-Criteria Documentation, Release 0.8.7.dev0

abstract diff (other, rtol=1e-05, atol=1e-08, equal_nan=True, check_dtypes=False)

Return the difference between two objects within a tolerance.
This method should be implemented by subclasses to define how differences between objects are calculated.

The tolerance parameters rtol and atol, equal_nan, and check_dtypes are provided to be used by the numpy
and pandas equality functions. These parameters allow you to customize the behavior of the equality com-
parison, such as setting the relative and absolute tolerance for numeric comparisons, considering NaN
values as equal, and checking for the data type of the objects being compared.

Notes
The tolerance values are positive, typically very small numbers. The relative difference (rtol * abs(b)) and
the absolute difference arol are added together to compare against the absolute difference between a and b.

NaNs are treated as equal if they are in the same place and if equal_nan=True. Infs are treated as equal
if they are in the same place and of the same sign in both arrays.

Parameters
» other (object) — The object to compare to.
e rtol (float, optional)— The relative tolerance parameter. Default is 1e-05.
e atol (float, optional) - The absolute tolerance parameter. Default is 1e-08.

e equal_nan (bool, optional)— Whether to consider NaN values as equal. Default is
True.

» check_dtypes (bool, optional)-— Whether to check the data type of the objects. De-
fault is False.

Returns
The difference between the current and the other object.

Return type
the_diff

See also:

equals, aequals, numpy.isclose(), numpy.all(), numpy.any(), numpy.equal(), numpy.
allclose()

aequals(other, *, rtol=1e-05, atol=1e-08, equal_nan=True, check_dtypes=False)

Check if the two objects are equal within a tolerance.
All the parameters ara passed to the diff method.
Parameters
» other (object) — The object to compare to.
e rtol (float, optional)— The relative tolerance parameter. Default is 1e-05.
e atol (float, optional) - The absolute tolerance parameter. Default is 1e-08.

e equal_nan (bool, optional)— Whether to consider NaN values as equal. Default is
True.

¢ check_dtypes (bool, optional) - Whether to check the data type of the objects. De-
fault is False.

Returns
True if the objects are equal within the specified tolerance, False otherwise.

4.3.

skcriteria package 121

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

Scikit-Criteria Documentation, Release 0.8.7.dev0

Return type
bool

equals (other)
Return True if the objects are equal.

This method calls aquals() without tolerance.

Parameters
other (object) — Other instance to compare.

Returns
equals — Returns True if the two objects are equals.

Return type
bool:py:class:

See also:

aequals, diff.

skcriteria.utils.rank module

Functions for calculate and compare ranks (ordinal series).

skcriteria.utils.rank.rank_values(arr, reverse=False)

Evaluate an array and return a 1 based ranking.
Parameters
e arr ((numpy.ndarray, numpy .ndarray)) — A array with values

» reverse (bool default False) — By default (False) the lesser values are ranked first (like in
time lapse in a race or Golf scoring) if is True the data is highest values are the first.

Returns
Array of rankings the i-nth element has the ranking of the i-nth element of the row array.

Return type
numpy .ndarray

Examples

>>> from skcriteria.util.rank import rank_values
>>> # the fastest (the lowest value) goes first
>>> time_laps = [0.59, 1.2, 0.3]

>>> rank_values(time_laps)

array([2, 3, 11)

>>> # highest is better

>>> scores = [140, 200, 98]

>>> rank_values(scores, reverse=True)

array([2, 1, 3])

skcriteria.utils.rank.dominance (array_a, array_b, reverse=False)

Calculate the dominance or general dominance between two arrays.
Parameters

e array_a — The first array to compare.

122 Chapter 4. Contents

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#bool

Scikit-Criteria Documentation, Release 0.8.7.dev0

» array_b — The second array to compare.

» reverse (bool (default=False)) — array_a[i] array_b[i] if array_a[i] > array_b[i] if
reverse is False, otherwise array_a[i] array_bli] if array_a[i] < array_bl[i]. Also revese can
be an array of boolean of the same shape as array_a and array_b to revert every item inde-
pendently. In other words, reverse assume the data is a minimization problem.

Returns
dominance — Named tuple with 4 parameters:
* eq: How many values are equals in both arrays.

¢ aDb: How many values of array_a dominate those of the same
position in array_b.

* bDa: How many values of array_b dominate those of the same
position in array_a.

* eq_where: Where the values of array_a are equals those of the same
position in array_b.

» aDb_where: Where the values of array_a dominates those of the same
position in array_b.

e bDa_where: Where the values of array_b dominates those of the same
position in array_a.

Return type
_Dominance

skcriteria.utils.unames module

Utility to achieve unique names for a collection of objects.

skcriteria.utils.unames.unique_names (*, names, elements)

Generate names unique name.
Parameters
* elements (iterable of size n)- objects to be named
e names (iterable of size n)-— names candidates

Returns
Returns a list where each element is a tuple. Each tuple contains two elements: The first element
is the unique name of the second is the named object.

Return type
list of tuples

4.3. skcriteria package 123

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#list

Scikit-Criteria Documentation, Release 0.8.7.dev0

4.3.10 skcriteria.madm deprecated package

Warning: This package is deprecated, and is simply an alias for the skcriteria.agg package.
Therefore

from skcriteria.madm.similarity import TOPSIS
from skcriteria.madm import electre

Is equivalent to

from skcriteria.agg.similarity import TOPSIS
from skcriteria.agg import electre

MCDA aggregation methods and internal machinery.
This Deprecated backward compatibility layer around skcriteria.agg.
Deprecated since version 0.8.5: ‘skcriteria.madm’ module is deprecated, use ‘skcriteria.agg’ instead

class skcriteria.madm.KernelResult (method, alternatives, values, extra)
Bases: ResultABC

Separates the alternatives between good (kernel) and bad.

This type of results is used by methods that select which alternatives are good and bad. The good alternatives
are called “kernel”

Parameters
* method (str) — Name of the method that generated the result.
e alternatives (array-1like)— Names of the alternatives evaluated.

* values (array-1ike) — Values assigned to each alternative by the method, where the i-th
value refers to the valuation of the i-th. alternative.

* extra (dict-1ike) — Extra information provided by the method regarding the evaluation
of the alternatives.

property kernel_
Alias for values.

property kernel_size_

How many alternatives has the kernel.

property kernel_where_

Indexes of the alternatives that are part of the kernel.

property kernelwhere_

Indexes of the alternatives that are part of the kernel.
Deprecated since version 0.7: Use kernel_where_ instead

property kernel_alternatives_
Return the names of alternatives in the kernel.

class skcriteria.madm.RankResult (method, alternatives, values, extra)
Bases: ResultABC

Ranking of alternatives.

124 Chapter 4. Contents

https://docs.python.org/3/library/stdtypes.html#str

Scikit-Criteria Documentation, Release 0.8.7.dev0

This type of results is used by methods that generate a ranking of alternatives.
Parameters
* method (str) — Name of the method that generated the result.
e alternatives (array-1ike) — Names of the alternatives evaluated.

* values (array-1ike) — Values assigned to each alternative by the method, where the i-th
value refers to the valuation of the i-th. alternative.

* extra (dict-1like) — Extra information provided by the method regarding the evaluation
of the alternatives.

property has_ties_

Return True if two alternatives shares the same ranking.

property ties_

Counter object that counts how many times each value appears.

property rank_
Alias for values.

property untied_rank_

Ranking whitout ties.

if the ranking has ties this property assigns unique and consecutive values in the ranking. This method only
assigns the values using the command numpy .argsort (rank_) + 1.

to_series(*, untied=Fualse)

The result as pandas.Series.

class skcriteria.madm.ResultABC(method, alternatives, values, extra)

Bases: DiffEqualityMixin
Base class to implement different types of results.

Any evaluation of the DecisionMatrix is expected to result in an object that extends the functionalities of this
class.

Parameters
* method (str) — Name of the method that generated the result.
e alternatives (array-1like)— Names of the alternatives evaluated.

* values (array-1ike) — Values assigned to each alternative by the method, where the i-th
value refers to the valuation of the i-th. alternative.

» extra (dict-1like) — Extra information provided by the method regarding the evaluation
of the alternatives.

property values

Values assigned to each alternative by the method.
The i-th value refers to the valuation of the i-th. alternative.

property method
Name of the method that generated the result.

property alternatives
Names of the alternatives evaluated.

4.3. skcriteria package 125

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Scikit-Criteria Documentation, Release 0.8.7.dev0

property extra_

Additional information about the result.

Note: e_ is an alias for this property

property e_
Additional information about the result.

Note: e_ is an alias for this property

to_series()
The result as pandas.Series.

property shape
Tuple with (number_of_alternatives,).

rank.shape <==> np.shape(rank)

diff (other, rtol=1e-05, atol=1e-08, equal_nan=False, check_dtypes=False)
Return the difference between two objects within a tolerance.

This method should be implemented by subclasses to define how differences between objects are calculated.

The tolerance parameters rtol and atol, equal_nan, and check_dtypes are provided to be used by the numpy
and pandas equality functions. These parameters allow you to customize the behavior of the equality com-
parison, such as setting the relative and absolute tolerance for numeric comparisons, considering NaN
values as equal, and checking for the data type of the objects being compared.

Parameters
* other (object) — The object to compare to.
e rtol (float, optional) - The relative tolerance parameter. Default is 1e-05.
e atol (float, optional)— The absolute tolerance parameter. Default is 1e-08.

* equal_nan (bool, optional)— Whether to consider NaN values as equal. Default is
True.

¢ check_dtypes (bool, optional) - Whether to check the data type of the objects. De-
fault is False.

Returns
The difference between the current and the other object.

Return type
the_diff

See also:

equals, aequals, numpy.isclose(), numpy.all(), numpy.any(), numpy.equal(), numpy.
allclose()

126 Chapter 4. Contents

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

Scikit-Criteria Documentation, Release 0.8.7.dev0

Notes
The tolerance values are positive, typically very small numbers. The relative difference (rfol * abs(b)) and
the absolute difference arol are added together to compare against the absolute difference between a and b.

NaNss are treated as equal if they are in the same place and if equal_nan=True. Infs are treated as equal
if they are in the same place and of the same sign in both arrays.

values_equals (other)
Check if the alternatives and values are the same.

The method doesn’t check the method or the extra parameters.

class skcriteria.madm.SKCDecisionMakerABC
Bases: SKCMethodABC

Abstract class for all decisor based methods in scikit-criteria.

evaluate(dm)

Validate the dm and calculate and evaluate the alternatives.

Parameters
dm (skcriteria.data.DecisionMatrix)— Decision matrix on which the ranking will be
calculated.

Returns
Ranking.

Return type
skcriteria.data.RankResult

4.4 Changelog

4.4.1 Version 0.8.7

* New Added functionality for user extension of scikit-criteria with decorators for creating aggregation and trans-
formation models using functions.

>>> from skcriteria.extend import mkagg, mktransformer

>>>
>>> @mkagg

>>> def MyAgg(**kwargs):

>>> # Implementation of the aggregation function
>>>

>>> @mkagg(foo=1)
>>> def MyAggWithHyperparam(**kwargs) :

>>> # Implementation of the aggregation function with
>>> # hyperparameter 'foo'
>>>

>>> @mktransformer

>>> def MyTransformer (**kwargs):

>>> # Implementation of the transformation function
>>>

>>> @mktransformer(bar=2)

>>> def MyTransformerWithHyperparam(**kwargs):

(continues on next page)

4.4. Changelog 127

Scikit-Criteria Documentation, Release 0.8.7.dev0

(continued from previous page)

>>> # Implementation of the transformation function with
>>> # hyperparameter 'bar'

These decorators enable the creation of aggregation and transformation classes based on provided functions,
allowing users to define decision-making models with less flexibility than traditional inheritance-based models.
For more information check the tutorial Extending Aggregation and Transformation Functions

e New Module: Introduced the skcriteria.testing module, exposing utility functions for for comparing ob-
jects created in Scikit-Criteria in a testing environment. These functions facilitate the comparison of instances
of the DecisionMatrix, ResultABC, and RanksComparator classes.

The assertion functions utilize pandas and numpy testing utilities for comparing matrices, series, and other at-
tributes.

Check the Reference for more information.

* New The API of the agg, pipeline, preprocessing, and extend modules has been cleaned up to prevent autocom-
pletion with imports from other modules. The imported modules are still present, but they are excluded when
attempting to autocomplete. This functionality is achieved thanks to the context manager skcriteria.utils.
cmanagers.hidden().

* New All methods (agg and transformers) has a new get_method_name instance method.

* Drop Drop support for Python 3.8

4.4.2 Version 0.8.6

* New Rank reversal 1 implementhed in the RankInvariantChecker class

>>> import skcriteria as skc
>>> from skcriteria.cmp import RankInvariantChecker
>>> from skcriteria.agg.similarity import TOPSIS

>>> dm = skc.datasets.load_van202levaluation()

>>> rrtl = RankInvariantChecker (TOPSIS())

>>> rrtl.evaluate(dm)

<RanksComparator [ranks=['Original', 'M.ETH', 'M.LTC', 'M.XLM', 'M.BNB', 'M.ADA',
«"M.LINK', 'M.XRP', 'M.DOGE']]>

* New The module skcriteria.madm was deprecated in favor of skcriteria.agg
* Add support for Python 3.11.
* Removed Python 3.7. Google collab now work with 3.8.

» Updated Scikit-Learn to 1.3.x.

* Now all cached methods and properties are stored inside the instance. Previously this was stored inside the class
generating a memoryleak.

128 Chapter 4. Contents

https://scikit-criteria.quatrope.org/en/latest/tutorial/extend.html
https://scikit-criteria.quatrope.org/en/latest/api/testing.html

Scikit-Criteria Documentation, Release 0.8.7.dev0

4.4.3 Version 0.8.3

Fixed a bug detected on the EntropyWeighted, Now works as the literature specifies

4.4.4 Version 0.8.2

We bring back Python 3.7 because is the version used in google.colab.

Bugfixes in plot. frontier and dominance.eq.

4.4.5 Version 0.8

New The skcriteria.cmp package utilities to compare rankings.

New The new package skcriteria.datasets include two datasets (one a toy and one real) to quickly start
your experiments.

New DecisionMatrix now can be sliced with a syntax similar of the pandas.DataFrame.

— dm["c®"] cut the cO criteria.

dm[["cO®", "c2"] cut the criteria cO and c2.

dm.loc["a®"] cut the alternative a0.

dm.loc[["a®", "al"]] cut the alternatives a0 and al.

dm.iloc[®:3] cuts from the first to the third alternative.

New imputation methods for replacing missing data with substituted values. These methods are in the module
skcriteria.preprocessing.impute.

New results object now has a to_series method.

Changed Behaviour: The ranks and kernels equals are now called values_equals. The new aequals sup-
port tolerances to compare numpy arrays internally stored in extra_, and the equals method is equivalent to
aequals(rtol=0, atol=0).

We detected a bad behavior in ELECTREZ2, so we decided to launch a FutureWarning when the class is instan-
tiated. In the version after 0.8, a new implementation of ELECTRE?2 will be provided.

Multiple __repr__ was improved to folow the Python recomendation

Critic weighter was renamed to CRITIC (all capitals) to be consistent with the literature. The old class is still
there but is deprecated.

All the functions and classes of skcriteria.preprocessing.distance was moved to skcriteria.
preprocessing.scalers.

The StdWeighter now uses the sample standar-deviation. From the numerical point of view, this does not
generate any change, since the deviations are scaled by the sum. Computationally speaking there may be some
difference from the ~5th decimal digit onwards.

Two method of the Objective enum was deprecated and replaced:
— Objective.construct_from_alias() -> Objective.from_alias() (classmethod)

— Objective.to_string() -> Objective.to_symbol()

4.4.

Changelog 129

https://docs.python.org/3/library/functions.html#repr

Scikit-Criteria Documentation, Release 0.8.7.dev0

The deprecated methods will be removed in version 1.0.

* Add a dominance plot DecisionMatrix.plot.dominance().

¢ WeightedSumModel raises a ValueError when some value < 0.

¢ Moved internal modules

— skcriteria.core.methods.SKCTransformerABC -> skcriteria.preprocessing.
SKCTransformerABC
— skcriteria.core.methods.SKCMatrixAndWeightTransformerABC -> skcriteria.

preprocessing.SKCMatrixAndWeightTransformerABC

4.4.6 Version 0.7

New method: ELECTRE2.

New preprocessing strategy: A new way to transform from minimization to maximization criteria:
NegateMinimize () which reverses the sign of the values of the criteria to be minimized (useful for not breaking
distance relations in methods like TOPSIS). Additionally the previous we rename the MinimizeToMaximize ()
transformer to InvertMinimize().

Now the RankingResult, support repeated/tied rankings and some methods were implemented to deal with
these cases.

— RankingResult.has_ties_ to see if there are tied values.
— RankingResult.ties_ to see how often values are repeated.

— RankingResult.untied_rank_ to get a ranking with no repeated values.
repeated values.

KernelResult now implements several new properties:
— kernel_alternatives_ to know which alternatives are in the kernel.
— kernel_size_ to know the number of alternatives in the kernel.

— kernel_where_ was replaced by kernelwhere_ to standardize the api.

4.4.7 Version 0.6

Support for Python 3.10.

All the objects of the project are now immutable by design, and can only be mutated troughs the object . copy ()
method.

Dominance analysis tools (DecisionMatrix.dominance).

The method DecisionMatrix.describe() was deprecated and will be removed in version /.0.
New statistics functionalities DecisionMatrix.stats accessor.

The accessors are now cached in the DecisionMatrix.

Tutorial for dominance and satisfaction analysis.

TOPSIS now support hyper-parameters to select different metrics.

130

Chapter 4. Contents

Scikit-Criteria Documentation, Release 0.8.7.dev0

* Generalize the idea of accessors in scikit-criteria througth a common framework (skcriteria.utils.accabc
module).

» New deprecation mechanism through the

e skcriteria.utils.decorators.deprecated decorator.

4.4.8 Version 0.5

In this version scikit-criteria was rewritten from scratch. Among other things:
* The model implementation API was simplified.

* The Data object was removed in favor of DecisionMatrix which implements many more useful features for
MCDA.

* Plots were completely re-implemented using Seaborn.

* Coverage was increased to 100%.

* Pipelines concept was added (Thanks to Scikit-learn).

* New documentation. The quick start is totally rewritten!

Full Changelog: https://github.com/quatrope/scikit-criteria/commits/0.5

4.4.9 Version 0.2

First OO stable version.

4.4.10 Version 0.1

Only functions.

4.5 Bibliography

4.6 Indices and tables

* genindex
* modindex

e search

4.5. Bibliography 131

http://seaborn.pydata.org/
https://scikit-learn.org/stable/modules/generated/sklearn.pipeline.Pipeline.html
https://github.com/quatrope/scikit-criteria/commits/0.5

Scikit-Criteria Documentation, Release 0.8.7.dev0

132 Chapter 4. Contents

BIBLIOGRAPHY

[Brauers & Zavadskas, 2006] Brauers, W. K., & Zavadskas, E. K. (2006). The moora method and its application to
privatization in a transition economy. Control and cybernetics, 35, 445-469.

[Brauers & Zavadskas, 2012] Brauers, W. K. M., & Zavadskas, E. K. (2012). Robustness of multimoora: a method for
multi-objective optimization. Informatica, 23(1), 1-25.

[Bridgman, 1922] Bridgman, P. W. (1922). Dimensional analysis. Yale university press.

[Cabral et al., 2016] Cabral, J. B., Luczywo, N. A., & Zanazzi, J. L. (2016). Scikit-criteria: colecciéon de métodos de
andlisis multi-criterio integrado al stack cientifico de Python. XLV Jornadas Argentinas de Informdtica
e Investigacion Operativa (45JAIIO)- XIV Simposio Argentino de Investigacion Operativa (SIO) (Buenos
Aires, 2016) (pp. 59-66). URL: http://45jaiio.sadio.org.ar/sites/default/files/Sio-23.pdf

[Diakoulaki et al., 1995] Diakoulaki, D., Mavrotas, G., & Papayannakis, L. (1995). Determining objective weights in
multiple criteria problems: the critic method. Computers & Operations Research, 22(7), 763-770.

[Fishburn, 1967] Fishburn, P. C. (1967). Letter to the editor-additive utilities with incomplete product sets: application
to priorities and assignments. Operations Research, 15(3), 537-542.

[Gomes et al., 2004] Gomes, L., Gonzdlez-Araya, M., & Carignano, C. (2004 , 11). Tomada de decisées em cendrios
complexos. Thomson.

[Hwang & Yoon, 1981] Hwang, C.-L., & Yoon, K. (1981). Methods for multiple attribute decision making. Multiple
attribute decision making (pp. 58-191). Springer.

[Miller & others, 1963] Miller, D. W., & others. (1963). Executive decisions and operations research. AGRIS.
[Rajkumar, 2021] Rajkumar, S. (2021, Jul). Cryptocurrency historical prices.

[Roy, 1968] Roy, B. (1968). Classement et choix en présence de points de vue multiples. Revue francaise
d'informatique et de recherche opérationnelle, 2(8), 57-75.

[Roy, 1990] Roy, B. (1990). The outranking approach and the foundations of electre methods. Readings in multiple
criteria decision aid (pp. 155-183). Springer.

[Roy & Bertier, 1971] Roy, B., & Bertier, P. (1971). La méthode electre ii. Note de travail, 142.

[Roy & Bertier, 1973] Roy, B., & Bertier, P. (1973). La méthode electre ii(une application au média-planning...). VII
éme Conférence internationale de recherché opérationalle.

[Simon, 1955] Simon, H. A. (1955). A behavioral model of rational choice. The quarterly journal of economics, 69(1),
99-118.

[Tzeng & Huang, 2011] Tzeng, G.-H., & Huang, J.-J. (2011). Multiple attribute decision making: methods and appli-
cations. CRC press.

[VanHeerden et al., 2021a] Van Heerden, N. A., Cabral, J. B., & Luczywo, N. (2021). Evaluacion de la importancia
de criterios para la seleccion de criptomonedas. XXXIV ENDIO - XXXII EPIO Virtual 2021.

133

http://45jaiio.sadio.org.ar/sites/default/files/Sio-23.pdf

Scikit-Criteria Documentation, Release 0.8.7.dev0

[VanHeerden et al., 2021b] Van Heerden, N. A., Cabral, J. B., & Luczywo, N. (2021). Evaluation of the importance
of criteria for the selection of cryptocurrencies. arXiv preprint arXiv:2109.00130.

[Wikipedia contributors, 2021a] Wikipedia contributors (2021). TOPSIS — Wikipedia, The Free Encyclopedia. [On-
line; accessed 23-November-2021].

[Wikipedia contributors, 2021b] Wikipedia contributors (2021). Weighted sum model — Wikipedia, The Free Ency-
clopedia. [Online; accessed 23-November-2021].

[Wikipedia contributors, 2022a] Wikipedia contributors (2022). Pareto efficiency — Wikipedia, The Free Encyclope-
dia. [Online; accessed 9-October-2022].

[Wikipedia contributors, 2022b] Wikipedia contributors (2022). Pareto front — Wikipedia, The Free Encyclopedia.
[Online; accessed 9-October-2022].

[Wikipedia contributors, 2023] Wikipedia contributors (2023). Academic publishing — Wikipedia, The Free Encyclo-
pedia. [Online; accessed 28-January-2023].

134 Bibliography

S

skcriteria,
skcriteria.
skcriteria.
skcriteria.
skcriteria.
skcriteria.
skcriteria.
skcriteria.
skcriteria.
skcriteria.
skcriteria.
skcriteria.
skcriteria.
skcriteria.
skcriteria.
skcriteria.
skcriteria.
skcriteria.
skcriteria.
skcriteria.
skcriteria.
skcriteria.
skcriteria.
skcriteria.
skcriteria.

71

skcriteria.
skcriteria.
skcriteria.
skcriteria.
skcriteria.

88

skcriteria.
skcriteria.
skcriteria.
skcriteria.
skcriteria.
skcriteria.
skcriteria.
skcriteria.
skcriteria.

45

agg, 60
agg._agg_base, 60
agg.electre, 63
agg.moora, 66
agg.similarity, 68
agg.simple, 68
agg.simus, 70

cmp, 98

cmp . ranks_cmp, 100
cmp.ranks_rev, 98
cmp.ranks_rev.rank_inv_check, 98
core, 45
core.data, 45
core.dominance, 52
core.methods, 53
core.objectives, 54
core.plot, 54
core.stats, 59
datasets, 107
extend, 109

madm, 124
pipeline, 108
preprocessing, 71
preprocessing._preprocessing_base,

distance, 72
filters, 73
impute, 83
increment, 87
invert_objectives

preprocessing.
preprocessing.
preprocessing.
preprocessing.
preprocessing.

preprocessing.push_negatives, 89
preprocessing.scalers, 90
preprocessing.weighters, 94
testing, 111

utils, 112

utils.accabc, 112
utils.bunch, 113
utils.cmanagers, 113
utils.deprecate, 114

PYTHON MODULE INDEX

skcriteria.utils
skcriteria.utils

skcriteria.utils.
skcriteria.utils.
.rank, 122

.unames, 123

skcriteria.utils
skcriteria.utils

.dict_cmp, 116
.doctools, 116

1p, 117
object_diff, 120

135

Scikit-Criteria Documentation, Release 0.8.7.dev0

136 Python Module Index

A

AccessorABC (class in skcriteria.utils.accabc), 112
add_sphinx_deprecated_directive() (in module
skcriteria.utils.deprecate), 114

add_value_to_zero() (in module skcrite-
ria.preprocessing.increment), 87
AddValueToZero (class in skcrite-

ria.preprocessing.increment), 88
aequals () (skcriteria.utils.object_diff. DiffEqualityMixin
method), 121

allow_missing_alternatives (skcrite-

ria.cmp.ranks_rev.rank_inv_check.RankInvariantCk¥depistanceMatrixScaler

property), 99

alternatives (skcriteria.agg._agg_base.ResultABC
property), 61
alternatives (skcriteria.core.data.DecisionMatrix

property), 48
alternatives (skcriteria.madm.ResultABC property),
125
(skcriteria.core.plot. DecisionMatrixPlotter
method), 58
assert_dmatrix_equals()
ria.testing), 111
assert_rcmp_equals() (in module skcriteria.testing),
112
assert_result_equals()
ria.testing), 112

area()

(in module skcrite-

(in module skcrite-

B

bar) (skcriteria.cmp.ranks_cmp.RanksComparatorPlotter

method), 106
(skcriteria.core.plot. DecisionMatrixPlotter
method), 55

bar()

barh () (skcriteria.cmp.ranks_cmp.RanksComparatorPlotter

method), 106
(skcriteria.core.plot. DecisionMatrixPlotter
method), 56

barh()

base_value (skcriteria.preprocessing. weighters. EqualWeighter

property), 95
Bool (class in skcriteria.utils.lp), 117

box () (skcriteria.cmp.ranks_cmp.RanksComparatorPlotter

method), 106

INDEX

box() (skcriteria.core.plot.DecisionMatrixPlotter
method), 57

bt Q) (skcriteria.core.dominance.DecisionMatrixDominanceAccessor
method), 52

Bunch (class in skcriteria.utils.bunch), 113

C

cenit_distance() (in module skcrite-
ria.preprocessing.distance), 72

CenitDistance (class in skcrite-
ria.preprocessing.distance), 72

(class in skcrite-

ria.preprocessing.scalers), 93

(skcriteria.preprocessing.scalers.MinMaxScaler

property), 91

compare () (skcriteria.core.dominance.DecisionMatrixDominanceAccesso:
method), 52

concordance () (in module skcriteria.agg.electre), 63

construct_from_alias() (skcrite-
ria.core.objectives.Objective method),
54

copy O (skcriteria.core.data.DecisionMatrix method), 48

clip

class

copy O (skcriteria.core.methods.SKCMethodABC
method), 54
corr() (skcriteria.cmp.ranks_cmp.RanksComparator

method), 101

corr () (skcriteria.cmp.ranks_cmp.RanksComparatorPlotter
method), 104

CORRELATION (skcriteria.preprocessing.weighters.CRITIC
attribute), 97

correlation (skcriteria.preprocessing. weighters. CRITIC

property), 97

(skcriteria.cmp.ranks_cmp.RanksComparator

method), 102

cov () (skcriteria.cmp.ranks_cmp.RanksComparatorPlotter
method), 105

criteria (skcriteria.core.data.DecisionMatrix prop-

erty), 48

criteria_filters (skcrite-
ria.preprocessing.filters.SKCByCriteriaFilterABC
property), 73

criteria_range

cov()

(skcrite-

137

Scikit-Criteria Documentation, Release 0.8.7.dev0

ria.preprocessing.scalers.MinMaxScaler
property), 91
CRITIC (class in skcriteria.preprocessing.weighters), 97
Critic (class in skcriteria.preprocessing.weighters), 97
critic_weights() (in module skcrite-
ria.preprocessing.weighters), 97

D

DecisionMatrix (class in skcriteria.core.data), 45
DecisionMatrixDominanceAccessor (class in skcrite-
ria.core.dominance), 52
DecisionMatrixPlotter (class in skcriteria.core.plot),
54
DecisionMatrixStatsAccessor (class
ria.core.stats), 59
deprecated() (in module skcriteria.utils.deprecate),

in skcrite-

115
describe() (skcriteria.core.data.DecisionMatrix
method), 49

df_temporal_header() (in module skcrite-
ria.utils.cmanagers), 113

dict_allclose() (in module skcriteria.utils.dict_cmp),
116

diff(Q) (in module skcriteria.utils.object_diff), 120

diff(Q) (skcriteria.agg._agg_base.ResultABC method),

61

(skcriteria.cmp.ranks_cmp.RanksComparator

method), 100

diff£ () (skcriteria.core.data.DecisionMatrix method), 50

diff(Q) (skcriteria.madm.ResultABC method), 126

diffQ (skcriteria.utils.object_diff. DiffEqualityMixin
method), 120

DiffEqualityMixin (class
ria.utils.object_diff), 120

discordance() (in module skcriteria.agg.electre), 64

diffQ

in skcrite-

distance() (skcriteria.cmp.ranks_cmp.RanksComparator

method), 103

attribute), 53

dtypes (skcriteria.core.data.DecisionMatrix property),
48

E

e_ (skcriteria.agg._agg_base.ResultABC property), 61
e_ (skcriteria.madm.ResultABC property), 126
ELECTREL (class in skcriteria.agg.electre), 64
electrel() (in module skcriteria.agg.electre), 64
ELECTRE2 (class in skcriteria.agg.electre), 64
electre2() (in module skcriteria.agg.electre), 64

entropy_weights() (in module skcrite-
ria.preprocessing.weighters), 95
EntropyWeighter (class in skcrite-

ria.preprocessing.weighters), 96
eq Q) (skcriteria.core.dominance.DecisionMatrixDominanceAccessor
method), 52
equal_weights() (in module
ria.preprocessing.weighters), 94
equals() (skcriteria.utils.object_diff. DiffEqualityMixin
method), 122
EqualWeighter (class in
ria.preprocessing.weighters), 95
estimator (skcriteria.preprocessing.impute.lterativelmputer
property), 85
evaluate() (skcriteria.agg._agg_base.SKCDecisionMakerABC
method), 60
evaluate() (skcriteria.agg.simus.SIMUS method), 70
evaluate() (skcriteria.cmp.ranks_rev.rank_inv_check.RankInvariantChec
method), 100
evaluate() (skcriteria.madm.SKCDecisionMakerABC
method), 127
evaluate() (skcriteria.pipeline.SKCPipeline method),
108
extra_ (skcriteria.agg._agg_base.ResultABC property),
61
extra_ (skcriteria.madm.ResultABC property), 125

skcrite-

skcrite-

distance() (skcriteria.cmp.ranks_cmp.RanksComparatorPlotter

method), 105

dmaker (skcriteria.cmp.ranks_rev.rank_inv_check. RankInvaficvit Chadker (skcriteria.preprocessing.impute.Iterativelmputer

property), 99

doc_inherit() (in module skcriteria.utils.doctools),
116

dominance (skcriteria.core.data.DecisionMatrix prop-
erty), 48

dominance () (in module skcriteria.utils.rank), 122

property), 86
£il1l_value (skcriteria.preprocessing.impute.Simplelmputer
property), 83
Filter (class in skcriteria.preprocessing.filters), 73
FilterEQ (class in skcriteria.preprocessing.filters), 78
FilterGE (class in skcriteria.preprocessing.filters), 75

dominance () (skcriteria.core.dominance.DecisionMatrix Deiiiner@ (cleswin skcriteria.preprocessing.filters), 75

method), 52 FilterIn (class in skcriteria.preprocessing filters), 80
dominance () (skcriteria.core.plot. DecisionMatrixPlotter FilterLE (class in skcriteria.preprocessing.filters), 77
method), 58 FilterLT (class in skcriteria.preprocessing.filters), 76
dominated() (skcriteria.core.dominance.DecisionMatrix DerilnemdVE (cleswin skcriteria.preprocessing.filters), 79
method), 53 FilterNonDominated (class in skcrite-
dominators_of (skcrite- ria.preprocessing.filters), 81
ria.core.dominance.DecisionMatrixDominanceAccessor
138 Index

Scikit-Criteria Documentation, Release 0.8.7.dev0

FilterNotIn (class in skcriteria.preprocessing.filters),
81
Float (class in skcriteria.utils.lp), 117

flow() (skcriteria.cmp.ranks_cmp.RanksComparatorPlotter

method), 103

fmf () (in module skcriteria.agg.moora), 67

from_alias() (skcriteria.core.objectives.Objective
class method), 54

from_mcda_data() (skcrite-
ria.core.data.DecisionMatrix class method),

47

frontier() (skcriteria.core.plot.DecisionMatrixPlotter
method), 58

FullMultiplicativeForm (class in skcrite-
ria.agg.moora), 67

G

get_method_name() (skcrite-
ria.core.methods.SKCMethodABC method),
53

get_parameters() (skcrite-
ria.core.methods.SKCMethodABC method),

54

H

iobjectives (skcriteria.core.data.DecisionMatrix
property), 48

is_solver_available() (in module skcriteria.utils.lp),

117

IterativeImputer (class in
ria.preprocessing.impute), 84

skcrite-

K

kde O (skcriteria.core.plot. DecisionMatrixPlotter

method), 57

keep_empty_criteria (skcrite-
ria.preprocessing.impute.lterativelmputer

property), 86

keep_empty_criteria (skcrite-
ria.preprocessing.impute. KNNImputer prop-
erty), 87

keep_empty_criteria (skcrite-

ria.preprocessing.impute.SimpleImputer
property), 83

kernel_ (skcriteria.agg._agg_base.KernelResult prop-
erty), 63

kernel_ (skcriteria.madm.KernelResult property), 124

kernel_alternatives_ (skcrite-
ria.agg._agg_base.KernelResult property),
63

has_loops () (skcriteria.core.dominance.DecisionMatrixDkexneldcadlccessatives_ (skcriteria.madm. KernelResult

method), 53

has_ties_ (skcriteria.agg._agg_base.RankResult prop-
erty), 62

has_ties_ (skcriteria.madm.RankResult property), 125

heatmap () (skcriteria.cmp.ranks_cmp.RanksComparatorPlotter

method), 104

heatmap() (skcriteria.core.plot.DecisionMatrixPlotter
method), 55

hidden() (in module skcriteria.utils.cmanagers), 114

HiddenAlreadyUsedInThisContext, 113

hist((skcriteria.core.plot. DecisionMatrixPlotter
method), 56

ignore_missing_criteria (skcrite-

property), 124

kernel_size_ (skcriteria.agg._agg_base.KernelResult
property), 63

kernel_size_ (skcriteria.madm.KernelResult property),

124

kernel_where_ (skcriteria.agg._agg_base.KernelResult
property), 63

kernel_where_ (skcriteria.madm.KernelResult prop-
erty), 124

KernelResult (class in skcriteria.agg._agg_base), 63

KernelResult (class in skcriteria.madm), 124

kernelwhere_ (skcriteria.agg._agg_base.KernelResult
property), 63

kernelwhere_ (skcriteria.madm.KernelResult property),
124

ria.preprocessing.filters.SKCByCriteriaFilterA pcKNNImputer (class in skcriteria.preprocessing.impute),

property), 73

iloc (skcriteria.core.data.DecisionMatrix property), 50

imputation_order (skcrite-
ria.preprocessing.impute.Iterativelmputer
property), 86

initial_strategy (skcrite-
ria.preprocessing.impute.lterativelmputer
property), 86

Int (class in skcriteria.utils.lp), 117

InvertMinimize (class in
ria.preprocessing.invert_objectives), 88

skcrite-

86

L

last_diff_strategy (skcrite-

ria.cmp.ranks_rev.rank_inv_check.RankInvariantChecker

property), 99
load_simple_stock_selection() (in module skcrite-

ria.datasets), 107
load_van202levaluation()

ria.datasets), 107
loc (skcriteria.core.data.DecisionMatrix property), 50

(in module skcrite-

Index

139

Scikit-Criteria Documentation, Release 0.8.7.dev0

M

skcriteria.
mad () (skcriteria.core.stats.DecisionMatrixStatsAccessor skcriteria.
method), 60 skcriteria.
matrix (skcriteria.core.data.DecisionMatrix property), skcriteria.
48 skcriteria.
matrix_scale_by_cenit_distance() (in module skcr%ter%a.
skcriteria.preprocessing.scalers), 93 Skcr%ter%a .
MAX (skcriteria.core.objectives.Objective attribute), 54 skcr }ter %a .
max_iter (skcriteria.preprocessing.impute.lterativelmputer skcriteria.
property), 85 ?8 .
max_value (skcriteria.preprocessing.impute.Iterativelmputer ~ SXCT iteria.
property), 86 skcr}ter}a.
MaxAbsScaler (class in skcrite- skcriteria.
ria.preprocessing.scalers), 91 Skcr}ter}a.
Maximize (class in skcriteria.utils.lp), 118 Skcr}ter}a.
MaxScaler (class in skcriteria.preprocessing.scalers), 91 skcr}ter}a.
maxwhere (skcriteria.core.data.DecisionMatrix prop- skcr }ter 1a.
erty), 48 skcriteria.
method (skcriteria.agg._agg_base.ResultABC property), skcriteria.
61 skcriteria.
method (skcriteria.madm.ResultABC property), 125 skcr}ter}a.
metric (skcriteria.agg.similarity. TOPSIS property), 68 skcr }ter 1a.
metric (skcriteria.preprocessing.impute. KNNImputer skcriteria.
property), 87 71 .
MIN (skcriteria.core.objectives.Objective attribute), 54 skcr }ter 1a.
min_value (skcriteria.preprocessing.impute.Iterativelmputer ~ SXCT lteria.
property), 86 Skcr}ter%a.
Minimize (class in skcriteria.utils.lp), 118 Skcr:.Lter}a.
MinimizeToMaximize (class in skcrite- skcriteria.
ria.preprocessing.invert_objectives), 89 88)
MinMaxScaler (class in skcrite- skcriteria.
ria.preprocessing.scalers), 90 8_9)
minwhere (skcriteria.core.data.DecisionMatrix prop- skcr }ter %a .
erty), 48 skcr}ter%a.
MISSING (in module skcriteria.utils.object_diff), 120 skcr}ter:.La .
missing_values (skcrite- skcriteria.
ria.preprocessing.impute.lterativelmputer skcr 1 ter 1a.
property), 85 Skcr}ter}a.
missing_values (skcrite- skcriteria.
ria.preprocessing.impute. KNNImputer prop- skcriteria.
erty), 87 skcr%ter%a.
missing_values (skcrite- skcriteria.
ria.preprocessing.impute.SimpleImputer skcr 1 ter 1a.
property), 83 skcriteria.
mkagg () (in module skcriteria.extend), 109 skcriteria.
skcriteria.

mkdm() (in module skcriteria.core.data), 50
mkpipe () (in module skcriteria.pipeline), 109
mkrank_cmp() (in module skcriteria.cmp.ranks_cmp),
106
mktransformer () (in module skcriteria.extend), 110
module
skcriteria, 45
skcriteria.agg, 60
skcriteria.agg._agg_base, 60

N

n_nearest_criteria
ria.preprocessing.impute.Iterativelmputer

property), 86

agg.electre, 63

agg.moora, 66
agg.similarity, 68
agg.simple, 68

agg.simus, 70

cmp, 98

cmp . ranks_cmp, 100
cmp.ranks_rev, 98
cmp.ranks_rev.rank_inv_check,

core, 45
core.data, 45
core.dominance, 52
core.methods, 53
core.objectives, 54
core.plot, 54
core.stats, 59
datasets, 107
extend, 109

madm, 124
pipeline, 108
preprocessing, 71
preprocessing._preprocessing_base,

distance, 72
filters, 73
impute, 83
increment, 87
invert_objectives,

preprocessing.
preprocessing.
preprocessing.
preprocessing.
preprocessing.
preprocessing.push_negatives,
scalers, 90
weighters, 94

preprocessing.
preprocessing.
testing, 111
utils, 112
utils.accabc, 112
utils.bunch, 113
utils.cmanagers, 113
utils.deprecate, 114
utils.dict_cmp, 116
utils.doctools, 116
utils.lp, 117
utils.object_diff, 120
utils.rank, 122
utils.unames, 123

MultiMOORA (class in skcriteria.agg.moora), 67
multimoora() (in module skcriteria.agg.moora), 67

(skcrite-

140

Index

Scikit-Criteria Documentation, Release 0.8.7.dev0

n_neighbors (skcriteria.preprocessing.impute. KNNImputerank_values () (in module skcriteria.utils.rank), 122

property), 87

RankInvariantChecker (class in skcrite-

named_ranks (skcriteria.cmp.ranks_cmp.RanksComparator ria.cmp.ranks_rev.rank_inv_check), 98

property), 100

named_steps (skcriteria.pipeline.SKCPipeline prop-
erty), 108

NegateMinimize (class in skcrite-
ria.preprocessing.invert_objectives), 88

NonGlobalHidden, 113

NonStandardNameWarning, 109

O

Objective (class in skcriteria.core.objectives), 54

objectives (skcriteria.core.data.DecisionMatrix prop-
erty), 48

ogive() (skcriteria.core.plot. DecisionMatrixPlotter
method), 57

P

p (skcriteria.agg.electre. ELECTRE]I property), 64

pO (skcriteria.agg.electre. ELECTRE? property), 65

p1 (skcriteria.agg.electre. ELECTRE? property), 65

p2 (skcriteria.agg.electre. ELECTRE? property), 65

pearson_correlation() (in module skcrite-
ria.preprocessing.weighters), 96

plot (skcriteria.cmp.ranks_cmp.RanksComparator prop-
erty), 103

plot (skcriteria.core.data.DecisionMatrix property), 48

push_negatives() (in module skcrite-
ria.preprocessing.push_negatives), 89

PushNegatives (class in skcrite-
ria.preprocessing.push_negatives), 90

Q

q (skcriteria.agg.electre. ELECTREI property), 64
a0 (skcriteria.agg.electre. ELECTRE?Z property), 65
ql (skcriteria.agg.electre. ELECTRE?2 property), 65

R

r2_score() (skcriteria.cmp.ranks_cmp.RanksComparator

method), 102

RankResult (class in skcriteria.agg._agg_base), 62

RankResult (class in skcriteria.madm), 124

ranks (skcriteria.cmp.ranks_cmp.RanksComparator
property), 100

RanksComparator (class in skcriteria.cmp.ranks_cmp),
100

RanksComparatorPlotter (class in skcrite-
ria.cmp.ranks_cmp), 103

ratio() (in module skcriteria.agg.moora), 66

RatioMOORA (class in skcriteria.agg.moora), 66

ReferencePointMOORA (class in skcriteria.agg.moora),
66

refpoint () (in module skcriteria.agg.moora), 66

reg () (skcriteria.cmp.ranks_cmp.RanksComparatorPlotter
method), 104

repeat (skcriteria.cmp.ranks_rev.rank_inv_check.RankInvariantChecker
property), 99

ResultABC (class in skcriteria.agg._agg_base), 60

Resul tABC (class in skcriteria.madm), 125

S

sample_posterior (skcrite-
ria.preprocessing.impute.lterativelmputer
property), 85

scale (skcriteria.preprocessing.weighters.CRITIC prop-

erty), 97
scale_by_sum() (in module skcrite-
ria.preprocessing.scalers), 92
scale_by_vector() (in module skcrite-

ria.preprocessing.scalers), 91
sense (skcriteria.utils.lp. Maximize attribute), 119
sense (skcriteria.utils.lp.Minimize attribute), 118
shape (skcriteria.agg._agg_base.ResultABC property),
61
shape (skcriteria.core.data. DecisionMatrix property), 49
shape (skcriteria.madm.ResultABC property), 126
SimpleImputer (class in skcrite-
ria.preprocessing.impute), 83
SIMUS (class in skcriteria.agg.simus), 70

r2_score() (skcriteria. cmp.ranks_cmp.RanksComparatorPslfHﬁ;é O (in module skcriteria.agg.simus), 70

method), 105
random_state (skcrite-

SKCArithmeticFilterABC (class in skcrite-
ria.preprocessing.filters), 74

ria.cmp.ranks_rev.rank_inv_check. Ranklnvariamgﬁ%&r iteriaFilterABC (class in skerite-

property), 100

random_state (skcrite-
ria.preprocessing.impute.lterativelmputer
property), 86

rank_ (skcriteria.agg._agg_base.RankResult property),
62

rank_ (skcriteria.madm.RankResult property), 125

rank_by (skcriteria.agg.simus.SIMUS property), 70

ria.preprocessing.filters), 73
SKCDecisionMakerABC (class in skcrite-
ria.agg._agg_base), 60
SKCDecisionMakerABC (class in skcriteria.madm), 127
SKCImputerABC (class in skcrite-
ria.preprocessing.impute), 83
SKCMatrixAndWeightTransformerABC (class in skcri-
teria.preprocessing._preprocessing_base), 71

Index

141

Scikit-Criteria Documentation, Release 0.8.7.dev0

SKCMethodABC (class in skcriteria.core.methods), 53
SKCObjectivesInverterABC

(class in

ria.preprocessing.invert_objectives), 88
SKCPipeline (class in skcriteria.pipeline), 108

skcriteria
module, 45

skcriteria.agg
module, 60

skcriteria.agg
module, 60

skcriteria.agg.

module, 63
skcriteria.agg
module, 66

skcriteria.agg.

module, 68

skcriteria.agg.

module, 68

skcriteria.agg.

module, 70
skcriteria.cmp
module, 98

skcriteria.cmp.

module, 100
skcriteria.cmp

module, 98
skcriteria.cmp

module, 98

._agg_base
electre
.moora
similarity
simple

simus

ranks_cmp
.ranks_rev

.ranks_rev.rank_inv_check

skcriteria.core

module, 45

skcriteria.core.data

module, 45

skcriteria.core.dominance

module, 52

skcriteria.core.methods

module, 53

skcriteria.core.objectives

module, 54

skcriteria.core.plot

module, 54

skcriteria.core.stats

module, 59

skcriteria.datasets

module, 107

skcriteria.extend

module, 109

skcriteria.madm

module, 124

skcriteria.pipeline

skcrite-

skcriteria.preprocessing.distance

module, 72
skcriteria.preprocessing.filters

module, 73
skcriteria.preprocessing.impute

module, 83
skcriteria.preprocessing.increment

module, 87
skcriteria.preprocessing.invert_objectives

module, 88
skcriteria.preprocessing.push_negatives

module, 89
skcriteria.preprocessing.scalers

module, 90
skcriteria.preprocessing.weighters

module, 94
skcriteria.testing

module, 111
skcriteria.utils

module, 112
skcriteria.utils.accabc

module, 112
skcriteria.utils.bunch

module, 113
skcriteria.utils.cmanagers

module, 113
skcriteria.utils.deprecate

module, 114
skcriteria.utils.dict_cmp

module, 116
skcriteria.utils.doctools

module, 116
skcriteria.utils.lp

module, 117
skcriteria.utils.object_diff

module, 120
skcriteria.utils.rank

module, 122
skcriteria.utils.unames

module, 123
SKCriteriaDeprecationWarning, 114
SKCriteriaFutureWarning, 114

SKCSetFilterABC (class in skcrite-
ria.preprocessing.filters), 80

SKCTransformerABC (class in skcrite-
ria.preprocessing._preprocessing_base),
71

SKCWeighterABC (class in skcrite-

ria.preprocessing.weighters), 94

module, 108 solver (skcriteria.agg.simus.SIMUS property), 70
skcriteria.preprocessing spearman_correlation() (in module skcrite-
module, 71 ria.preprocessing.weighters), 96
skcriteria.preprocessing._preprocessing_base StandarScaler (class in skcrite-
module, 71 ria.preprocessing.scalers), 90
142 Index

Scikit-Criteria Documentation, Release 0.8.7.dev0

stats (skcriteria.core.data. DecisionMatrix property), 48

std_weights() (in module skcrite-
ria.preprocessing.weighters), 95
StdWeighter (class in skcrite-

ria.preprocessing.weighters), 95
steps (skcriteria.pipeline.SKCPipeline property), 108

strategy (skcriteria.preprocessing.impute.Simplelmputer ;31 es equals()

property), 83

Vv

value (skcriteria.preprocessing.increment. AddValueToZero

property), 88
values (skcriteria.agg._agg_base.ResultABC property),

61
values (skcriteria.madm.ResultABC property), 125
(skcrite-
ria.agg._agg_base.ResultABC method),

strict (skcriteria.preprocessing.filters. FilterNonDominated 62

property), 82
SumScaler (class in skcriteria.preprocessing.scalers), 93

T

values_equals() (skcriteria.madm.ResultABC
method), 127
var_type (skcriteria.utils.lp.Bool attribute), 118

var_type (skcriteria.utils.lp.Float attribute), 117

target (skcriteria.preprocessing._preprocessing_base.SKCatrivfoed WkighthamsfilselpAB&iribute), 117

property), 72
ties_ (skcriteria.agg._agg_base.RankResult property),
62
ties_ (skcriteria.madm.RankResult property), 125
to_dataframe() (skcrite-
ria.cmp.ranks_cmp.RanksComparator
method), 101
to_dataframe() (skcriteria.core.data.DecisionMatrix

method), 49

to_dict() (skcriteria.core.data.DecisionMatrix
method), 49

to_series() (skcriteria.agg._agg_base.RankResult
method), 63

to_series() (skcriteria.agg._agg_base.ResultABC

method), 61
to_series() (skcriteria.madm.RankResult method), 125
to_series() (skcriteria.madm.ResultABC method), 126
to_string(Q) (skcriteria.core.objectives.Objective
method), 54
to_symbol () (skcriteria.core.objectives.Objective
method), 54
(skcriteria.preprocessing.impute.lterativelmputer
property), 85
TOPSIS (class in skcriteria.agg.similarity), 68
topsis () (in module skcriteria.agg.similarity), 68
transform() (skcriteria.pipeline.SKCPipeline method),
109

tol

VectorScaler (class in skcrite-
ria.preprocessing.scalers), 92
verbose (skcriteria.preprocessing.impute.Iterativelmputer

property), 86

W

warn() (in module skcriteria.utils.deprecate), 115

wbar() (skcriteria.core.plot. DecisionMatrixPlotter
method), 55

wbarh(Q) (skcriteria.core.plot.DecisionMatrixPlotter
method), 56

wbox () (skcriteria.core.plot.DecisionMatrixPlotter
method), 57

WeightedProductModel (class in skcrite-

ria.agg.simple), 69

WeightedSumModel (class in skcriteria.agg.simple), 68

weights (skcriteria.core.data.DecisionMatrix property),
48

weights (skcriteria.preprocessing.impute. KNNImputer
property), 87

weights_outrank() (in module skcriteria.agg.electre),
64

wheatmap () (skcriteria.core.plot.DecisionMatrixPlotter

method), 55

(skcriteria.core.plot. DecisionMatrixPlotter
method), 56
will_change() (in module skcriteria.utils.deprecate),

whist()

transform() (skcriteria.preprocessing._preprocessing_base.SKCTrangformerABC

method), 71

transform() (skcriteria.preprocessing.filters.FilterNonDominated

method), 82

U

unique_names() (in module skcriteria.utils.unames),
123

untied_rank_ (skcriteria.agg._agg_base.RankResult
property), 63

untied_rank_ (skcriteria.madm.RankResult property),
125

with_mean (skcriteria.preprocessing.scalers.StandarScaler

property), 90

with_std (skcriteria.preprocessing.scalers.StandarScaler
property), 90

wkde) (skcriteria.core.plot.DecisionMatrixPlotter
method), 57

wogive() (skcriteria.core.plot. DecisionMatrixPlotter
method), 58

wpm() (in module skcriteria.agg.simple), 69
wsm() (in module skcriteria.agg.simple), 68

Index

143

	Code Repository & Issues
	License
	Citation
	Contents
	Installation
	Using conda
	Alternative installation methods
	If you don’t have Python

	Tutorials
	Quick Start
	Conceptual overview
	Your first DecisionMatrix object
	Manipulating the Data
	Plotting
	Data transformation
	Using this data to feed some MCDA methods
	Weighted Sum Model
	Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS)
	ÉLimination et Choix Traduisant la REalité (ELECTRE)

	Dominance and satisfaction analysis (AKA filters)
	Case
	Satisfaction analysis
	Dominance
	Scikit-Criteria dominance analysis
	Filter non-dominated alternatives

	Full expermient

	Rankings comparison
	Motivation
	Tools to compare rankings manually
	Experiment setup
	Creating a RanksComparator instance
	RankComparator utilities
	RankComparator Plots!

	Extending Aggregation and Transformation Functions
	1. Introduction
	2. A New Aggregation Model
	3. Hyperparameters
	3. A New Transformer
	3.1 Special considerations regarding dtypes

	Extra tutorials
	Scientific articles

	skcriteria package
	skcriteria.core package
	skcriteria.core.data module
	skcriteria.core.dominance module
	skcriteria.core.methods module
	skcriteria.core.objectives module
	skcriteria.core.plot module
	skcriteria.core.stats module

	skcriteria.agg package
	skcriteria.agg._agg_base module
	skcriteria.agg.electre module
	skcriteria.agg.moora module
	skcriteria.agg.similarity module
	skcriteria.agg.simple module
	skcriteria.agg.simus module

	skcriteria.preprocessing package
	skcriteria.preprocessing._preprocessing_base module
	skcriteria.preprocessing.distance module
	skcriteria.preprocessing.filters module
	skcriteria.preprocessing.impute module
	skcriteria.preprocessing.increment module
	skcriteria.preprocessing.invert_objectives module
	skcriteria.preprocessing.push_negatives module
	skcriteria.preprocessing.scalers module
	skcriteria.preprocessing.weighters module

	skcriteria.cmp package
	skcriteria.cmp.ranks_rev package
	skcriteria.cmp.ranks_rev.ranks_inv_check module

	skcriteria.cmp.ranks_cmp module

	skcriteria.datasets package
	skcriteria.pipeline module
	skcriteria.extend module
	skcriteria.testing module
	skcriteria.utils package
	skcriteria.utils.accabc module
	skcriteria.utils.bunch module
	skcriteria.utils.cmanagers module
	Implementation Details

	skcriteria.utils.deprecate module
	skcriteria.utils.dict_cmp module
	skcriteria.utils.doctools module
	skcriteria.utils.lp module
	skcriteria.utils.object_diff module
	skcriteria.utils.rank module
	skcriteria.utils.unames module

	skcriteria.madm deprecated package

	Changelog
	Version 0.8.7
	Version 0.8.6
	Version 0.8.3
	Version 0.8.2
	Version 0.8
	Version 0.7
	Version 0.6
	Version 0.5
	Version 0.2
	Version 0.1

	Bibliography
	Indices and tables

	Bibliography
	Python Module Index
	Index

